





# MACENA PRIMARY COOPERATIVE











## GIYANI LOCAL SCALE CLIMATE RESILIENCE PROGRAMME



Technical designs for Local Multiple Use Systems.

Macena Primary Agricultural Cooperative water supply

March 2023

## Acknowledgements

We gratefully acknowledge the funding and support for the programme entitled Adaptive response and local scale adaptation for improving water security and increasing resilience to climate change in selected communities in Giyani, Limpopo. The programme is funded by the Government of Flanders, managed by the Water Research Commission and implemented by Tsogang Water and Sanitation, Association for Water and Rural Development (AWARD), University of the Western Cape (UWC) and the WRC's TTO Enterprise Development.









#### **DISCLAIMER**

The content of this handbook does not necessarily reflect the views and policies of the WRC or its partners, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. The WRC and partners cannot be held liable in any way for the damage, personal harm or any breakdowns stemming form actions related to the contents of this handbook.

March 2023

## **Table of Contents**

| Te | echnical designs for Local Multiple Use Systems              | 2  |
|----|--------------------------------------------------------------|----|
| Ma | acena Primary Agricultural Cooperative water supply          | 2  |
| Αc | cknowledgements                                              | 3  |
| Tŀ | ne Giyani Local Scale Climate Resilience Programme (GLSCRP)  | 1  |
| Αŀ | oout this Technical Design document                          | 2  |
|    | Who is the Technical Design document for?                    | 2  |
|    | What does the Technical Design document contain?             | 2  |
|    | How to use the Technical Design Document?                    | 2  |
| 1  | Macena Primary Agricultural Cooperative intervention summary | 5  |
|    | Water source quality for the GLSCRP Project sites            | 6  |
|    | Water Sources for the GLSCRP project sites                   | 8  |
|    | Groundwater sample analyses for all water sources            | 9  |
|    | Agricultural Cooperative Water Supply Drawings:              | 14 |

## The Giyani Local Scale Climate Resilience Programme (GLSCRP)

The Giyani Local Scale Climate Resilience Programme (GLSCRP) aims to develop and implement activities that will research, develop and demonstrate climate adaptive responses and solutions for optimising water utilisation in drought-stricken areas. The programme will focus on the Greater Giyani Municipal area within the Mopani district and aims to impact an estimated 5000 beneficiaries over a three-year period in terms of water utilisation, improved water mix, and socio-economic opportunities as responses to climate adaptation. A 2019 WRC study on droughts and adaptation strategies has highlighted risks to reduced productivity, livelihoods and food security, and an increase in vector and water-borne diseases in communities such as Giyani. Ultimately, climate change impacts on water resources in the Giyani area cannot be underestimated.

The programme has three key areas that will support for improving local scale adaptation and resilience in Giyani. They are:

- 1) a strengthened enabling environment whereby local authorities, institutions, communities, traditional authorities and market players are mobilised to improve climate resilience and water utilisation;
- 2) improved energy, ground and surface water solutions developed with communities to optimise and diversify water sources;
- 3) activities that support livelihoods and local economic development opportunities.

The programme will cover a spectrum of rural and rural residential areas in Giyani, working closely with the Mopani District Municipality and the Greater Giyani Local Municipality. Implementation partners include Tsogang Water and Sanitation as the lead on water projects and infrastructure; Association for Water and Rural Development (AWARD) in support of capacity development and stakeholder engagement, University of the Western Cape (UWC) as the water and energy technical partner and the WRC's TTO Enterprise Development arm on social enterprise development supporting local economic development projects.



## About this Technical Design document

This technical Design document consist of a summary of all 5 sites of the Agricultural Cooperative project. Technical designs for the infrastructure interventions are also outline in this technical design document.

#### Who is the Technical Design document for?

This technical design document is meant for the Agriculture Cooperative members, Department of Agriculture and the Mopani District Municipality as the Water Service Authority.

#### What does the Technical Design document contain?

In this technical design document, we share important information on the type of innervations each project site received. We also share the technical designs for the infrastructure that was installed at each project site.

#### How to use the Technical Design Document?

The Agriculture Cooperative members will use the document for maintenance. The Department of Agriculture and the District Municipality will use the document to provide support to the agriculture cooperative in terms procuring more infrastructure and also to have in-depth knowledge of off grid water and alternative water source.

### Technical Designs for Agricultural Cooperative

The feasibility and design of the systems at each pilot site was refined in more detail based on the following aspects:

- 1. The original feasibility study conducted in WRC project No. C2020.2021-00718 (Jovanovic et al., 2021)
- 2. More specific coordinates, elevations measured at key points during the field campaign on 14-19 May 2022; further discussions with stakeholders that took place during the same field campaign
- 3. Technical information (static rest water levels and required pressure heads; water requirements pipeline layout, pipe diameter, installation and size of tanks; installation of booster pumps to secure enough water pressure is delivered)

The main method for the refinement of MUS technical design at pilot sites was the adapted Toolbox for Solar Powered Irrigation Systems (SPIS) (GIZ and FAO, 2021) and field measurements. Further refinement is possible once equipment specification and availability on the market from suppliers and manufacturers is known, as well as specific borehole characteristics and pumping tests. In particular, for the drinking water sources, the final work designs will consider the water treatment plant packages and the need for pressure booster pumps for water delivery to the distribution and storage systems. It should be noted that, for all sites, water meters will have to be installed at the point of abstraction and at the point of use, so that the efficiency of the distribution system can be assessed during performance evaluation, e.g. leakages and losses of water.

The following table describe the description and intervention for each agricultural cooperative projects:

| Agricultural Co-operative                     | Interventions                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Macena Primary<br>Agricultural<br>Cooperative | <ol> <li>Hybrid Solar System installed: This innovation integrates<br/>grid-supply with solar power for the purposes of powering<br/>local groundwater supply systems. The innovation provides<br/>relief from grid load shedding and allows for cheaper access<br/>to water for rural villages.</li> </ol> |
|                                               | 2. Security of Hybrid Solar System installed: theft and vandalism can be problematic. The project installed barbed fencing and alarm systems to protect investments.                                                                                                                                        |
|                                               | 3. Borehole testing, equipping and skills development: All boreholes where tested for water quality and equipped with a suitable pump for the system. In all cases beneficiaries where trained to understand water quality monitoring procedures.                                                           |
|                                               | 4. Plant in a bag system introduced: This system is an innovative and sustainable farming method that involves growing plants directly inside specially designed bags filled with a soil mix or other growing mediums.                                                                                      |

| 5. Drip irrigation system installed: In this project 1 hectare |
|----------------------------------------------------------------|
| of drip irrigation was installed to improve water use          |
| efficiency and support food production by the co-operative     |
|                                                                |

Table 1: Macena Primary Agricultural Cooperative Water Supply project sites and GLSCRP intervention

## 1 Macena Primary AgriculturalCooperative intervention summary

#### **BACKGROUND**

Muyexe is a women's farming cooperative with a calculate water requirement of 33.9 m3 d-1 or 12,374 m3 a-1 for the irrigation of three vegetable crops per year (e.g. tomatoes) on 0.5 ha. The water supply is from an operating unnumbered borehole that we named borehole No. 2; Jojo tanks are installed close to the pumping house. Abstracted groundwater is then stored in an approximately 80 m3 cement tank located about 420 m far from the pump. The reservoirs takes about 14-15 hours to fill. The entire farm is 17 ha (a small portion of the area is currently cultivated) and it is an important community project, currently being rehabilitated by the Limpopo Provincial Department of Agriculture.

#### INTERVENTION CONTENT

The need is to install a solar-powered groundwater pump for agricultural water use at borehole No. 2. In addition, a pressure booster pump is required to deliver water from the reservoir to the fields at enough pressure for sprinkler irrigation, usually operating at 2-3 bars. Providing additional distribution pipes and drip-irrigation lines is desirable, so that a water distribution network can be established from the water tank across the farm. The work design is shown on the Google Earth map in Figure 4. The pump and accompanying solar panels array will be installed at borehole No. 2 (elevation is 447 m) that will pump water to the concrete reservoir (elevation is 457 m). The groundwater quality is fit for agriculture with elevated NO3, which can be seen as an additional supplement of nutrients. Water treatment is therefore not required, however an ordinary filter for agricultural water will be required.

The specifications of the pump and solar panel array are presented in the technical documents. The calculated hydraulic heads and the prevalent climatic conditions (sunshine hours and solar radiation levels). It was estimated that 2.15 to 2.7 kWp of power are required (kWp standing for peak of kW power, when sunshine is at its peak), corresponding to 14.3 to 18 m2 of solar panels. If the pressure booster pump is to be equipped with solar panels, this will have to be done at the reservoir outlet

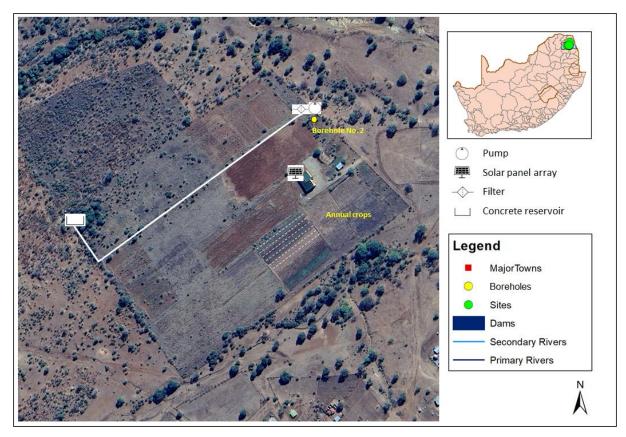



Figure 4: Final installation scheme of solar powered groundwater pumps for irrigation at Macena Primary Agricultural Cooperative (background is Google Earth image)

### Water source quality for the GLSCRP Project sites

The need was to install a solar-powered groundwater pump for agricultural water use at borehole No. 2. In addition, a pressure booster pump was installed to deliver water from the reservoir to the fields at enough pressure for sprinkler irrigation, usually operating at 2-3 bars. Providing additional distribution pipes and drip-irrigation lines is desirable, so that a water distribution network can be established from the water tank across the farm. The pump and accompanying solar panels array will be installed at borehole No. 2 (elevation is 447 m) that will pump water to the concrete reservoir (elevation is 457 m). The groundwater quality is fit for agriculture with elevated NO<sub>3</sub>, which can be seen as an additional supplement of nutrients. Water treatment is therefore not required, however an ordinary filter for agricultural water will be required.

Groundwater samples were collected during a field campaign on 26-31 October 2022 and collection of the samples is a continuous process in all the water sources. The samples were collected at the water sources according to standard procedures in 0.25 L plastic bottles, for chemical analyses in the laboratory. Water sources at all 9 pilot sites were sampled, except at Matsotsosela where borehole H14-0025 dried up and the pump at the currently operating borehole H14-1724 could not be started. The samples were kept in a cooler box with ice bricks, and sent to the Central Analytical Facility (CAF) of Stellenbosch University for laboratory analyses. The following physical and chemical parameters were analysed:

- Physical parameters: electrical conductivity (EC), total dissolved solids (TDS) and colour (Hazen)
- pH and total organic carbon (TOC)
- Anions: F, Cl, SO<sub>4</sub>, NO<sub>2</sub>, NO<sub>3</sub>, Br
- Cations: Li, Na, Ca, Mg, K, NH<sub>4</sub>
- Heavy metals: Al, Mn, Fe, Cu, Cd, Zn

All the results are presented in the tables below and they were compared to the South African National Standard SANS 241 of 2015 to determine the water quality fitness for domestic use. The figures in red in the tables indicates values of determinants that are not within the SANS 241 thresholds. For comparative purposes, the analyses of samples collected in the previous sampling campaign on 14-19 May 2022 are shown in the tables.

Although the pH values were within the range of drinking water quality standards for all sites, high salinity levels (Electrical Conductivity EC and Total Dissolved Solids TDS) were recorded at Mbhedle, A hi tirheni Mqekwa and Duvadzi, mainly due to elevated Na and Cl. High NO $_3$  levels were recorded at Mbhedle, Mayephu, Mzilela (borehole H14-0022), A hi tirheni Mqekwa and Muyexe, above the legally required standard for drinking water quality (<48.7 Mg L $^{-1}$  NO $_3$ ). The borehole at Mbhedle also displayed elevated NO $_2$  (6.698 mg/L). Total Organic Carbon (TOC) levels were within the standard drinking water quality range.

In comparison with the previous sampling campaign in May 2022, the elevated salinity values at Mbhedle, A hi tirheni Mqekwa farm and Duvadzi farm were confirmed. The elevated NO<sub>3</sub> at Mbhedle, Mayephu (borehole H14-1815), Mzilela, A hi tirheni Mqekwa and Muyexe were also confirmed due to the proximity of villages (draining water from villages). The spike of 205 mg L-1 NO3 concentration at borehole H14-1815 in Mayephu was confirmed due to the vicinity of an animal kraal. By far the best water quality source is the water retained in the sand alluvial aquifer of the Molototsi River (Nhlambeto farm at Dzumeri). This confirms previous results from the previous sampling campaign in May 2022. All parameters were within the standard limits, including colour. In general, the findings confirmed the need for groundwater treatment at sources for drinking water purpose. For agricultural purposes, water quality is fit to marginally fit for water use. The risk of salinization should be monitored at all sites.

## Water Sources for the GLSCRP project sites

| Village                      | Site                            | Water requirements (m³ d⁻¹) (m³ a⁻¹) |         | Source of water                         | Coordi      | Coordinates |          | Purpose                                                                                                                                   |
|------------------------------|---------------------------------|--------------------------------------|---------|-----------------------------------------|-------------|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 90                           | <b>5</b>                        |                                      |         |                                         | Latitude    | Longitude   | Duration |                                                                                                                                           |
| Mbhedle                      | Village<br>population =<br>1230 | 30.8*                                | 11242   | Borehole in<br>village, not<br>recorded | -           | -           | 3 years  | Drinking water.  No bulk water supply, villagers have to walk up to 0.7 km to collect water. Site proposed by community members.          |
| Mayephu                      | Village<br>population =         | 48.5*                                | 17702.5 | Borehole No.<br>H14-1815                | -23.589623° | 30.778480°  | 3 years  | <b>Drinking water.</b> Emergency intervention linked to bulk water supply. Borehole and                                                   |
|                              | 1940                            |                                      |         | Borehole No.<br>H14-1818                | -           | -           |          | reservoir are established.                                                                                                                |
| Mzilela                      | Village<br>population =<br>1150 | 28.8*                                | 14162   | Borehole in village                     | -23.592869° | 30.17120°   | 3 years  | <b>Drinking water.</b> Bulk water supply is seldom available due to water shortage (once per month).                                      |
| Matsotsosela                 | Village<br>population =<br>2300 | 57.5*                                | 20987.5 | Borehole No.<br>H14-0026                | -23.60106°  | 30.829530°  | 3 years  | Drinking water. No bulk water supply. Boreholes are established. Diesel expenses subsidized by local government are extremely             |
| Matsotsoseia                 |                                 | 37.3                                 |         | Borehole No.<br>H14-0025                | -23.600749° | 30.825683°  | 3 years  | high. Community operator is very committed.                                                                                               |
| Dzumeri                      | Nhlambeto farm                  | 58.9**                               | 21863.5 | Non-perennial river sand                | -23.561512° | 30.701696°  | 3 years  | Drinking water + emerging farm. Emerging farmer was recently asked to stop farming by other water users due to drop in groundwater level. |
| Dzumeri                      | Ngamba farm                     | 33.9                                 | 12373.5 | Borehole not numbered                   | -23.591533° | 30.706566°  | 3 years  | Emerging farm. Pressure head is too low with the current pumping system.                                                                  |
| Dzumeri (Daniel<br>Ravalela) | A hi tirheni<br>Mgekwa farm     | 33.9                                 | 12373.5 | Borehole No.<br>H14-1699                | -23.57025°  | 30.65841°   | 3 years  | Emerging farm.                                                                                                                            |
| Ravaleia)                    | iviqekwa iaiiii                 |                                      |         | Borehole No.<br>H14-1700                | -23.57094°  | 30.65878°   | 3 years  | Well established. Electricity bills are very high.                                                                                        |
| Loloka                       | Duvadzi farm                    | 33.9                                 | 12373.5 | Borehole No.<br>H14-1703                | -23.56712°  | 30.81966°   | 3 years  | Emerging farm. Well established. Groundwater can also be abstracted from adjacent non-perennial river sand.                               |
| Muyexe                       | Muyexe<br>community<br>project  | 33.9                                 | 12373.5 | Borehole not numbered                   | -23.187820° | 30.911963°  | 3 years  | Emerging farm. Rehabilitation of cooperative by Limpopo Department of Agriculture is planned.                                             |

Table 2: GLSCRP Water Source for project sites

## Groundwater sample analyses for all water sources

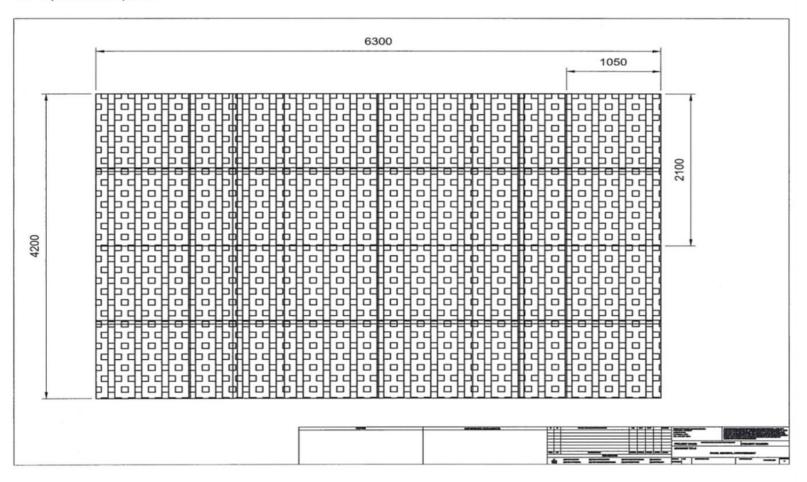
| Analysis               | Mbhedle                     | Mayephu<br>H14-1815 | Mzilela<br>H14-0022 | Nhlambeto farm                   | Ngamba farm                      | A hi tirheni<br>Mqekwa<br>farm<br>H14-1700 | Duvadzi farm<br>H14-1702         | Muyexe farm                      | SANS 241                               |
|------------------------|-----------------------------|---------------------|---------------------|----------------------------------|----------------------------------|--------------------------------------------|----------------------------------|----------------------------------|----------------------------------------|
| EC (μS/cm) (25°C)      | S/cm) (25°C) 2455 1586 1096 |                     | 196                 | 1533                             | 2683                             | 3556                                       | 1053                             | ≤ 1700                           |                                        |
| pH (25°C)              | 7.53                        | 7.06                | 7.07                | 7.92                             | 7.01                             | 7.21                                       | 7.36                             | 7.54                             | ≥ 5 and ≤ 9.7                          |
| TDS (ppm) @ 25°C       | 1228                        | 793                 | 548                 | 98                               | 767                              | 1342                                       | 1778                             | 527                              | ≤ 1200                                 |
| Colour (Hazen)         | 0.3                         | 0.0                 | 0.0                 | 6.3                              | 0.0                              | 0.0                                        | 0.0                              | 0.0                              | < 15                                   |
|                        |                             |                     |                     |                                  |                                  |                                            |                                  |                                  |                                        |
| F (mg/L)               | 0.439                       | 0.435               | 0.205               | 0.141                            | 0.452                            | 0.443                                      | 0.678                            | 0.232                            | ≤ 1.5                                  |
| CI (mg/L)              | 472.705                     | 128.466             | 117.984             | 6.497                            | 277.122                          | 668.842                                    | 1026.835                         | 62.029                           | ≤ 300                                  |
| SO <sub>4</sub> (mg/L) | 44.114                      | 71.668              | 29.832              | 3.544                            | 28.093                           | 46.311                                     | 83.111                           | 24.966                           | ≤ 500 (health)<br>≤ 250<br>(aesthetic) |
| PO <sub>4</sub> (mg/L) | n.d                         | n.d                 | n.d                 | Below<br>calibration<br>standard | Below<br>calibration<br>standard | n.d                                        | Below<br>calibration<br>standard | Below<br>calibration<br>standard | -                                      |
| NO <sub>2</sub> (mg/L) | 6.698                       | n.d                 | n.d                 | n.d                              | n.d                              | n.d                                        | n.d                              | n.d                              | ≤ 2.96                                 |
| Br (mg/L)              | 1.264                       | 0.627               | 0.448               | Below<br>calibration<br>standard | 0.609                            | 1.387                                      | 2.611                            | 0.313                            | -                                      |
| NO₃ (mg/L)             | 62.825                      | 204.651             | 100.388             | 4.542                            | 24.799                           | 73.812                                     | 27.22                            | 74.728                           | ≤ 48.7                                 |
|                        |                             |                     |                     |                                  |                                  |                                            |                                  |                                  |                                        |
| Li (mg/L)              | 0.025                       | 0.012               | 0.003               | n.d.                             | 0.009                            | 0.026                                      | 0.018                            | Below<br>calibration<br>standard | -                                      |
| Na (mg/L)              | 359.952                     | 77.172              | 72.004              | 12.883                           | 153.405                          | 242.848                                    | 338.291                          | 46.093                           | ≤ 200                                  |
| NH <sub>4</sub> (mg/L) | n.d.                        | n.d.                | n.d.                | n.d.                             | n.d.                             | n.d.                                       | n.d.                             | n.d.                             | ≤ 1.5                                  |
| K (mg/L)               | 11.663                      | 1.269               | 1.435               | 1.926                            | 2.393                            | 2.771                                      | 11.425                           | 0.583                            | -                                      |
| Mg (mg/L)              | 90.863                      | 101.797             | 53.733              | 3.617                            | 74.068                           | 129.812                                    | 182.351                          | 71.137                           | -                                      |
| Ca (mg/L)              | 81.935                      | 135.446             | 67.533              | 9.435                            | 87.14                            | 164.636                                    | 176.275                          | 63.648                           | -                                      |

Table 3: Results of the laboratory analyses of groundwater samples collected from all water sources at the pilot sites on 26-31 October 202

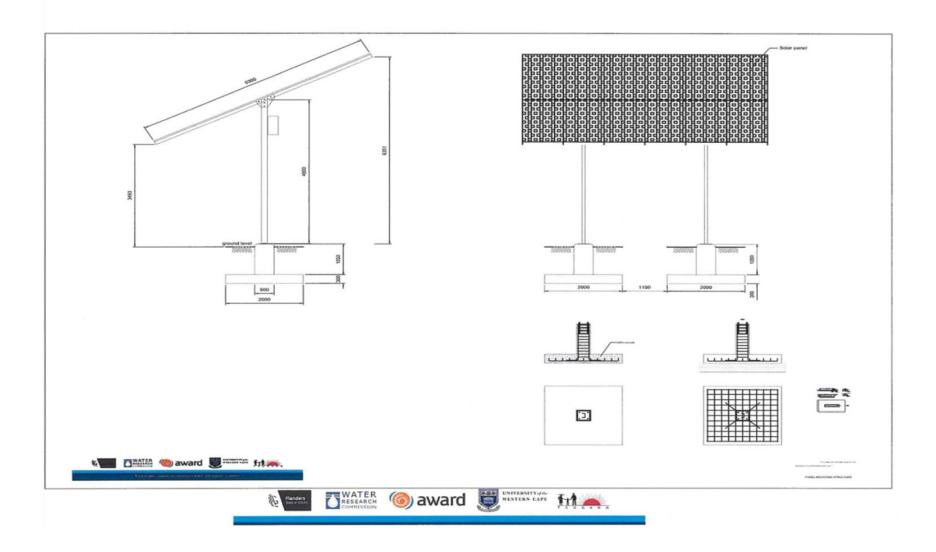
| Analysis               | Mbhedle | Mayephu<br>H14-<br>1816                                                                                                                       | Mayephu<br>H14-<br>1815 | Mzilela | Matsotsosela | Nhlambeto<br>farm                                                             | Ngamba<br>farm | A hi<br>tirheni<br>Mqekwa<br>farm<br>H14-1700 | Duvadzi<br>farm<br>H14-1702 | Muyexe farm | SANS 241                         |
|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|--------------|-------------------------------------------------------------------------------|----------------|-----------------------------------------------|-----------------------------|-------------|----------------------------------|
| EC (μS/cm) (25°C)      | 2500    | 1286                                                                                                                                          | 1566                    | 1046    | 2032         | 279.7                                                                         | 2691           | 2672                                          | 1941                        | 1045        | ≤ 1700                           |
| pH (25°C)              | 7.286   | 7.171                                                                                                                                         | 6.958                   | 7.928   | 7.335        | 7.275                                                                         | 6.857          | 7.16                                          | 7.569                       | 7.768       | ≥ 5 and ≤<br>9.7                 |
| TDS (ppm) @ 25°C       | 1336    | 523                                                                                                                                           | 1016                    | 1250    | 783          | 140                                                                           | 643            | 971                                           | 1346                        | 523         | ≤ 1200                           |
| Colour (Hazen)         | 1.7     | 1.4                                                                                                                                           | 0                       | 0.1     | 3.3          | 69.5                                                                          | 1.7            | 0                                             | 0.2                         | 0           | < 15                             |
|                        |         |                                                                                                                                               |                         |         |              |                                                                               |                |                                               |                             |             |                                  |
| F (mg/L)               | 0.592   | 0.598                                                                                                                                         | 0.582                   | 0.300   | 0.968        | 0.14                                                                          | 0.547          | 0.596                                         | 1.017                       | 0.321       | ≤ 1.5                            |
| CI (mg/L)              | 475.706 | 110.216                                                                                                                                       | 125.116                 | 87.419  | 319.65       | 16.741                                                                        | 678.633        | 632.826                                       | 463.861                     | 61.275      | ≤ 300                            |
| SO <sub>4</sub> (mg/L) | 44.819  | 46.085                                                                                                                                        | 74.881                  | 31.299  | 34.524       | 4.674                                                                         | 36.347         | 46.188                                        | 40.470                      | 24.318      | ≤ 500 (health) ≤ 250 (aesthetic) |
| PO <sub>4</sub> (mg/L) | n.d     | <lcs< th=""><th>n.d</th><th>n.d</th><th>n.d</th><th><lcs< th=""><th>n.d</th><th>n.d</th><th>n.d</th><th>n.d</th><th>-</th></lcs<></th></lcs<> | n.d                     | n.d     | n.d          | <lcs< th=""><th>n.d</th><th>n.d</th><th>n.d</th><th>n.d</th><th>-</th></lcs<> | n.d            | n.d                                           | n.d                         | n.d         | -                                |
| NO <sub>2</sub> (mg/L) | n.d     |                                                                                                                                               | n.d                     | n.d     |              | n.d                                                                           |                | n.d                                           | n.d                         | n.d         | ≤ 2.96                           |
| Br (mg/L)              | 1.303   | 0.420                                                                                                                                         | 0.634                   | 0.427   | 0.913        | 0.069                                                                         | 1.408          | 1.506                                         | 1.411                       | 0.302       | -                                |
| NO <sub>3</sub> (mg/L) | 73.867  | 32.588                                                                                                                                        | 212.745                 | 77.846  | 34.99        | 0.531                                                                         | 31.269         | 68.950                                        | 9.428                       | 70.932      | ≤ 48.7                           |
|                        |         |                                                                                                                                               |                         |         |              |                                                                               |                |                                               |                             |             |                                  |
| Na (mg/L)              | 357.126 | 69.707                                                                                                                                        | 77.438                  | 47.791  | 335.407      | 20.154                                                                        | 240.526        | 217.145                                       | 211.894                     | 49.142      | ≤ 200                            |
| NH <sub>4</sub> (mg/L) | n.d.    | n.d.                                                                                                                                          | n.d.                    | n.d.    | n.d.         | n.d.                                                                          | n.d.           | n.d.                                          | n.d.                        | n.d.        | ≤ 1.5                            |
|                        |         |                                                                                                                                               |                         |         |              |                                                                               |                |                                               |                             |             |                                  |
| K (mg/L)               | 12.138  | 2.937                                                                                                                                         | 1.984                   | 2.289   | 4.057        | 3.797                                                                         | 6.909          | 6.048                                         | 9.253                       | 1.407       | -                                |
| Mg (mg/L)              | 93.167  | 84.701                                                                                                                                        | 100.099                 | 85.141  | 64.826       | 8.600                                                                         | 133.473        | 137.232                                       | 89.329                      | 79.151      | -                                |
| Ca (mg/L)              | 85.097  | 100.382                                                                                                                                       | 137.242                 | 52.957  | 71.867       | 20.666                                                                        | 161.796        | 174.406                                       | 93.887                      | 66.138      | -                                |

| TOC [mg/l] | 16.519 | 15.347 | 15.533 | 9.214 | 15.663 | 6.629 | 16.181 | 15.674 | 8.467 | 8.889 | ≤ 10 |
|------------|--------|--------|--------|-------|--------|-------|--------|--------|-------|-------|------|
|            |        |        |        |       |        |       |        |        |       |       |      |

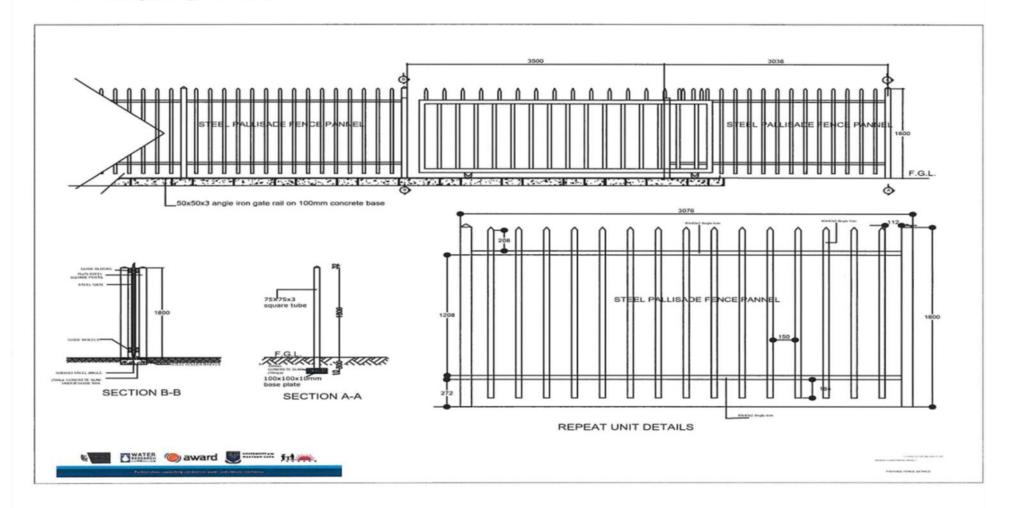
Table 4: Results of the laboratory analyses of groundwater samples collected from all water sources at the pilot sites on 15-16 May 2022


| Analysis               | Nhlambeto farm             | Ngamba farm | A hi tirheni<br>Mqekwa farm<br>AHM6 | Duvadzi farm<br>H14-1702   | Muyexe farm                | SANS 241          |
|------------------------|----------------------------|-------------|-------------------------------------|----------------------------|----------------------------|-------------------|
| EC (µS/cm) (25°C)      | 770                        | 3044        | 991.8                               | 2136                       | 1054                       | ≤ 1700            |
|                        |                            |             |                                     |                            |                            |                   |
| pH (25°C)              | 7.144                      | 6.528       | 7.588                               | 7.288                      | 6.954                      | ≥ 5 and ≤ 9.7     |
| TDS (ppm) @ 25°C       | 385                        | 1522        | 495.9                               | 1068                       | 527                        | ≤ 1200            |
| Colour (Hazen)         | 6.4                        | 0           | 0                                   | 2.8                        | 0.5                        | < 15              |
|                        |                            |             |                                     |                            |                            |                   |
| F (mg/L)               | 0.132                      | 0.574       | 0.791                               | 1.061                      | 0.356                      | ≤ 1.5             |
| CI (mg/L)              | 114.612                    | 876.824     | 24.54                               | 525.214                    | 66.463                     | ≤ 300             |
| SO₄ (mg/L)             | 13.826                     | 45.924      | 10.852                              | 55.364                     | 24.882                     | ≤ 500 (health)    |
| OO4 (IIIg/L)           | 10.020                     | 45.924      | 10.032                              | 33.304                     | 24.002                     | ≤ 250 (aesthetic) |
| PO <sub>4</sub> (mg/L) | n.d                        | n.d         | n.d                                 | Below calibration standard | Below calibration standard | 1                 |
| NO <sub>2</sub> (mg/L) | n.d                        | n.d         | n.d                                 | n.d                        | n.d                        | ≤ 2.96            |
| Br (mg/L)              | 0.297                      | 1.639       | 0.17                                | 1.466                      | 0.346                      | -                 |
| NO <sub>3</sub> (mg/L) | 2.106                      | 60.464      | 2.368                               | 16.16                      | 69.526                     | ≤ 48.7            |
|                        |                            |             |                                     |                            |                            |                   |
| Na (mg/L)              | 77.242                     | 275.105     | 138.067                             | 244.152                    | 55.269                     | ≤ 200             |
| NH <sub>4</sub> (mg/L) | Below calibration standard | n.d         | n.d                                 | n.d                        | n.d                        | ≤ 1.5             |
| K (mg/L)               | 6.335                      | 11.475      | 4.998                               | 10.261                     | 1.069                      | -                 |
| Mg (mg/L)              | 17.697                     | 145.058     | 33.308                              | 98.492                     | 73.848                     | -                 |
| Ca (mg/L)              | 45.39                      | 166.91      | 47.096                              | 95.499                     | 63.524                     | -                 |

| Analysis   | Nhlambeto farm                                                                                                                                    | Ngamba farm AHM6                                                                                                      |                                                                                           | Duvadzi farm<br>H14-1702                                       | Muyexe farm                                                      | SANS 241                             |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|
|            |                                                                                                                                                   |                                                                                                                       |                                                                                           |                                                                |                                                                  |                                      |
| TOC [mg/l] | 8.76                                                                                                                                              | 13.94                                                                                                                 | 13.89                                                                                     | 13.77                                                          | 12.60                                                            | ≤ 10                                 |
|            |                                                                                                                                                   |                                                                                                                       |                                                                                           |                                                                |                                                                  |                                      |
| Al (μg/L)  | <loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>≤ 300</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<> | <loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>≤ 300</th></loq<></th></loq<></th></loq<></th></loq<> | <loq< th=""><th><loq< th=""><th><loq< th=""><th>≤ 300</th></loq<></th></loq<></th></loq<> | <loq< th=""><th><loq< th=""><th>≤ 300</th></loq<></th></loq<>  | <loq< th=""><th>≤ 300</th></loq<>                                | ≤ 300                                |
| Mn (µg/L)  | 262.25                                                                                                                                            | 115.14                                                                                                                | 241.80                                                                                    | 24.32                                                          | <loq< td=""><td>≤ 400 (health)<br/>≤ 100 (aesthetic)</td></loq<> | ≤ 400 (health)<br>≤ 100 (aesthetic)  |
| Fe (µg/L)  | 2.98                                                                                                                                              | 1.91                                                                                                                  | 3.84                                                                                      | 2.68                                                           | 3.31                                                             | ≤ 2000 (health)<br>≤ 300 (aesthetic) |
| Cu (µg/L)  | 0.75                                                                                                                                              | 1.49                                                                                                                  | 1.65                                                                                      | <loq< td=""><td><loq< td=""><td>≤ 2000</td></loq<></td></loq<> | <loq< td=""><td>≤ 2000</td></loq<>                               | ≤ 2000                               |
| Cd (µg/L)  | <loq< th=""><th>0.09</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>≤ 3</th></loq<></th></loq<></th></loq<></th></loq<>                  | 0.09                                                                                                                  | <loq< th=""><th><loq< th=""><th><loq< th=""><th>≤ 3</th></loq<></th></loq<></th></loq<>   | <loq< th=""><th><loq< th=""><th>≤ 3</th></loq<></th></loq<>    | <loq< th=""><th>≤ 3</th></loq<>                                  | ≤ 3                                  |
| Zn (µg/L)  | 1.14                                                                                                                                              | 2.07                                                                                                                  | 3.67                                                                                      | 0.30                                                           | 30.44                                                            | ≤ 5000                               |
| As (μg/L)  | <loq< th=""><th><loq< th=""><th><loq< th=""><th>0.20</th><th>7.00</th><th>≤ 10</th></loq<></th></loq<></th></loq<>                                | <loq< th=""><th><loq< th=""><th>0.20</th><th>7.00</th><th>≤ 10</th></loq<></th></loq<>                                | <loq< th=""><th>0.20</th><th>7.00</th><th>≤ 10</th></loq<>                                | 0.20                                                           | 7.00                                                             | ≤ 10                                 |


Table 5: Results of the laboratory analyses of groundwater samples collected from all water sources at the pilot sites on 4-8 September 2023.

## Agricultural Cooperative Water Supply Drawings:


#### 1. Hybrid Solar System



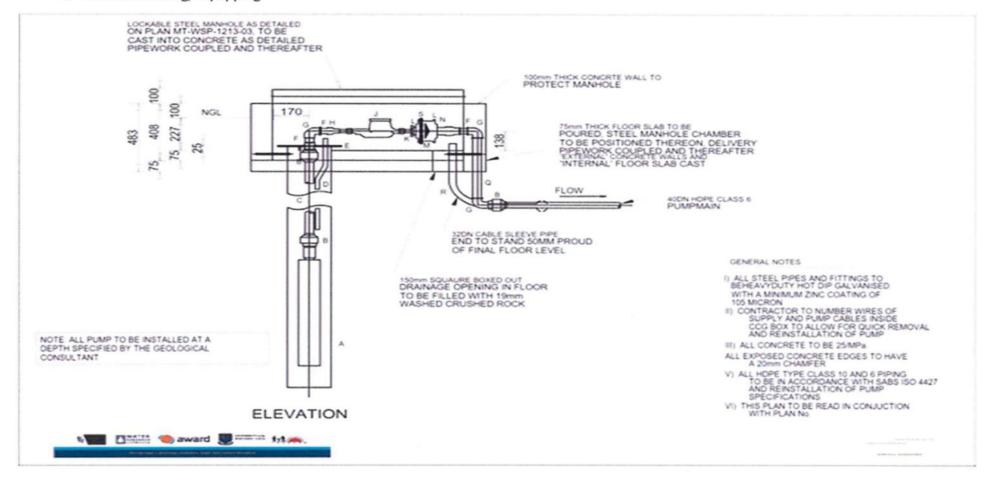




#### 2. Fencing (Storage and Solar)














#### 4. Borehole testing/ Equipping













#### 5. Drip irrigation layout





















GLSCRP is a community advised and LED programme demonstrating climate adaptive responses and solutions for improved water utilisation in the Giyani Municipal area. It is a partnership programme funded by the Government of Flanders, led by the Water Research Commission with partners Tsogang Water and Sanitation (Tsogang), Association for Water and Rural Development (AWARD) and the University of the Western Cape (UWC). The Programme aims to develop, research and demonstrate, practical water-linked climate adaptation solutions at local, community and catchment scale for the benefit of 5000 Giyani community members in order to improve water utilisation, community resilience and local economic growth for local and women-led enterprises.