

The Municipal Support Initiative

The Role of Municipal Spatial Planning in Managing Water Quality Impacts Ba-Phalaborwa & Maruleng Local Municipalities

Sam Braid, Linda Rossouw & Derick du Toit November 2017

USAID: RESILIENCE IN THE LIMPOPO BASIN PROGRAM (RESILIM) - OLIFANTS

Acknowledgements

The USAID: RESILIM-O project is funded by the U.S. Agency for International Development under USAID/Southern Africa RESILIENCE IN THE LIMPOPO BASIN PROGRAM (RESILIM). The RESILIM-O project is implemented by the Association for Water and Rural Development (AWARD), in collaboration with partners. Cooperative Agreement nr AID-674-A-13-00008.

 $\ensuremath{\mathbb{C}}$ Association for Water and Rural Development (AWARD)

Authors Sam Braid, Linda Rossouw & Derick du Toit

November 2017

Association for Water and Rural Development (AWARD)

P O Box 1919 Hoedspruit 1380 Limpopo, South Africa T 015-793 0503 W award.org.za

Company Reg. No. 98/03011/08

Contents

	List of Figures
	Abbreviations4
1	Introduction5
	1.1 Purpose of this report
	1.2 Introduction to the Mopani DM, Ba-Phalaborwa & Maruleng LM6
	1.2.1 Mopani District Municipality6
	1.2.2 Ba-Phalaborwa Local Municipality7
	1.2.3 Maruleng Local Municipality9
	1.3 Why it is important for municipalities to manage impacts to water quality 10
	1.4 Water quality 10
	1.4.1 Water Quality Allocation Plan - Translating in-river RWQOs to catchments targets 10
	1.4.2 Monitoring 11
	1.4.3 Urban & peri-urban water quality guidelines15
2	Concluding remarks
3	References
An	nexure A: Resource quality objectives
A١	INEXURE B: Example of a visual assessment form

List of Figures

Figure 1:	Local municipalities included in the Olifants Catchment (source WRP Consulting)5
Figure 2:	District municipalities within the Olifants Catchment7
Figure 3:	Ba-Phalaborwa Municipality showing high density residential including industrial and
	commercial areas (source: WRP consulting)8
Figure 4:	Maruleng Municipality showing high density residential including industrial and commercial
	areas9

Abbreviations

AR4	Fourth Assessment Report of the IPCC
CEO	Chief Executive Officer
CMA	Catchment Management Agency
DEA	Department of Environmental Affairs
DM	District Municipality
DWA	Department of Water Affairs
DWS	Department of Water and Sanitation
INR	Institute for Natural Resources
IPCC	International Panel on Climate Change
IRHI	Index of Reservoir Habitat Impairment
IUA	Integrated Unit of Analysis
LTAS	Long-term Adaptation Scenarios
RDP	Reconstruction and Development Plan
RQOs	Resource Quality Objectives
RWQOs	Resource Water Quality Objectives
SDF	Spatial Development Framework
SUDS	Sustainable Urban Drainage Systems
VIP	Ventilated Improved Pit latrine
WMS	Water Management System
WTW	Water Treatment Works
WUDS	Water Sensitive Urban Design
WWTW	Wastewater Treatment Works

1 Introduction

In terms of the Constitution (Schedule 4, Part B), Local governments are responsible for land use planning and management. As landuse activities directly impact on the environment, local government must consider the impacts of land uses on environment, including the resultant runoff water quantity and quality. The consequences of non- or poor management are impacts on our riverine systems and potential negative impacts on human settlements downstream. Land use planning is also set to have an impact on whether climate change scenarios will be experienced as severe or not.

Since municipalities span the full surface area of river catchments, it is important they are able to understand the importance of land use decisions on the catchment as a system. Furthermore, it is upon them to plan and monitor so that the system is not adversely affected by poor land use decisions. For example, local governments are responsible for stormwater management; as such they are responsible to ensure the quality of the stormwater resulting from the land use activities, and reaching the rivers or water resource body, does not degrade the quality of the resource.

Figure 1: Local municipalities included in the Olifants Catchment (source WRP Consulting)

In order to manage the water resources of the country, both in terms of quality and quantity, a series of Resource Quality Objectives (RQOs) have been determined for various reaches of the rivers and resources of South Africa. The RQOs provide a set of targets and thresholds against which to manage the water resources, i.e. a volume of flow and level of acceptable pollution of the water resources at different locations. Water users and discharges, including stormwater runoff, must be managed in such a way that the national standards are met, i.e. that the pollution load reaching the water resource does not exceed the threshold set.

The Ba-Phalaborwa Local Municipality is currently updating their Spatial Development Framework (SDF) and together with Maruleng Local Municipality (both part of Mopani District Municipality) requires advice on how to respond to resource management challenges in their land use planning process. The scope of this work includes consideration of land use impacts to water quality, as well as water related risks (flooding, drought and pollution) as a result of climate change in the area, identification of pollution hotspots, applicable legislation to manage the pollution, spatial planning recommendations along riverine zones, and various mitigation recommendations.

1.1 Purpose of this report

This report sets out to outline the impacts of land use on water quality, especially taking into consideration the effects of climate change and specifically within the study area. The report is also one in a series aimed at assisting local government in the managing water from a spatial planning perspective.

The report identifies the applicable legislation for managing land uses, and land use planning practices that should be considered during the SDF process taking into consideration the impact of landuse on the RQOs. The report further outlines the resource quality objectives that fall within the study area before identifying the pollution issues and hotspots within the project area.

1.2 Introduction to the Mopani DM, Ba-Phalaborwa & Maruleng LM

1.2.1 Mopani District Municipality

Mopani District Municipality (DM) is situated in the north-eastern part of the Limpopo Province, in South Africa. It is bordered in the east by Mozambique, in the north, by Vhembe District Municipality through Thulamela and Makhado Municipalities, in the south, by Mpumalanga province through Ehlanzeni District Municipality (Bushbuckridge, Thaba - Chweu and Greater Tubatse) and, to the west, by Capricorn District Municipality (Molemole, Polokwane and Lepelle - Nkumpi), in the south-west, by Sekhukhune District Municipality (Fetakgomo).

The district spans a total area of 2,001,100 ha (20,011 km²), inclusive of a portion of Kruger National Park from Olifants to Tshingwedzi camps or Lepelle to Tshingwedzi Rivers. There are 16 urban areas (towns and townships), 354 villages (rural settlements) and a total of 125 Wards. Ba-Phalaborwa and Maruleng are two of the local municipalities serviced by the Mopani District Municipality.

Figure 2: District municipalities within the Olifants Catchment

The key water resources in the Mopani DM consist of:

- Lower Olifants River from where it enters the Mopani DM near Ga-Mametsa up to the outflow from the DM and Kruger National Park at Olifants Gorge,
- Blyde River from downstream of the Blyderivierpoort Dam up to its confluence with the Olifants River,
- Selati River from its origin to its confluence with the Olifants River at Phalaborwa,
- Various smaller tributaries such as the Makhutswi and Klaserie rivers, and
- Letaba River which forms part of the northern border of the DM up to its confluence with the lower Olifants River in the Kruger National Park (although the Letaba is not part of the Olifants (East) catchment, the principles of this report still apply).
- The impoundments in the study area includes the Phalaborwa Barrage, Klaserie Dam (previously called Jan-Wassenaar Dam), and some smaller farm dams.

1.2.2 Ba-Phalaborwa Local Municipality

Ba-Phalaborwa Local Municipality (LM) is situated in the north-eastern part of South Africa, in the Mopani District of the Limpopo Province. It is one of the five local municipalities in the Mopani District. The municipality has a geographic area of 746,200ha) (7,462km²), with private farms covering a large proportion of the area, as well as tribal land that is under the control of traditional leaders (namely, Ba-Phalaborwa Traditional Authority, Maseke Traditional Authority, Selwane Traditional Authority and Majeje Traditional Authority).

Figure 3: Ba-Phalaborwa Municipality showing high density residential including industrial and commercial areas (source: WRP consulting)

The other areas are proclaimed towns of Namakgale, Lulekani and Gravelotte. Farms constitute 27% of the total municipal area. Most of the farms in Ba-Phalaborwa belong to private owners and are used for game and citrus farming. Ba-Phalaborwa serves as a convenient gateway to the Kruger National Park and the Greater Limpopo Transfrontier Park through the Mozambique (Masingir-Xai-Xai) Channel. There are several mines operating within the municipal area.

Water is mainly supplied by Lepelle Northern Water at 334.94 c/kl (2015). Phalaborwa is supplied from the Phalaborwa Barrage with the remaining schemes relying on boreholes and springs. Ba-Phalaborwa LM is supplied by eight reservoirs that are owned and managed by Lepelle Northern Water; these reservoirs supply BPM Town, Namakgale, Lulekani, Benfarm and Mashishimale.

Water schemes (Water Infrastructure Status & Intervention Plans, DWS, 2012)

- 1. Phalaborwa / Namakgale / Lulekani RWS
- 2. Murchison WS
- 3. Gravelotte WS
- 4. Leydsdorp local WS
- 5. Eiland supply
- 6. Prieska supply

1.2.3 Maruleng Local Municipality

The Maruleng Local Municipality (LM) is situated in the south-eastern quadrant of the Limpopo Province within the Mopani District Municipal Area of Jurisdiction. The municipal area extends over 324,699ha (3,246.99km²).

Figure 4: Maruleng Municipality showing high density residential including industrial and commercial areas

The Maruleng LM is bordered by the Kruger National Park to the east, the Ba-Phalaborwa and Tzaneen Local Municipalities to the north, the Lepelle Nkumpi Local Municipality to the west, and the Tubatse Local Municipality and Bushbuckridge Local Municipality to the south.

Agriculture, especially commercial agriculture, is a key economic driver and employment generator in Maruleng LM. The area exports mango and citrus, but other crops such as vegetables are becoming increasingly important. Maize is also cultivated by both commercial and subsistence farmers. There are other agricultural activities such as livestock which focuses on cattle, goats and poultry, as well as game farms and marula fruit.

The Maruleng Local Municipality is characterised by low rainfall. This results in limited water resources culminating in severe water shortages and drought conditions. Only 9% of the population have access to RDP standard water sources. The Municipality also provide free basic water (6000 litres per household per month).

Hoedspruit town is supplied by the Air Force base at Drakensig. The rest of the areas in Maruleng are supplied by boreholes.

Water schemes (Water Infrastructure Status & Intervention Plans, DWS, 2012)

- 1. Hoedspruit / Kampersrus WS
- 2. Mametje Sekororo Raw Water Scheme
- 3. Maruleng individual WS

Lack of access to basic sanitation services has created significant environmental and health problems. The fact that most villages in the municipality do not have RDP level sanitation constitutes a major risk in terms of ground water pollution. The main types of sanitary systems used in the municipality are water borne sewerage (flush toilets), septic tanks, ventilated improved Pit latrines (VIP), French drains and ordinary pit latrines or no basic services at all.

1.3 Why it is important for municipalities to manage impacts to water quality

Water is life. All living organisms need to water to live. We need water to grow crops to produce food to eat; we need water to drink, to cook, to clean; we need water to generate electricity; we need water to manufacture products e.g. clothing, bricks, buildings, paper, etc. In order to use the water, and to sustain the ecosystems the produce the goods and services we use to survive, requires the water to be of a suitable quality, or we can't use it and the environment can't survive. While the environment and the receiving water resources can tolerate some pollution, the accumulation of pollutants throughout the system can reach a threshold that the water resources and the environment can no longer tolerate. As the landuse activities of the catchment change and develop, this results in increased impacts to the water resources e.g. through increased runoff (quantity) and increased pollution loads (quality). It is therefore important to manage the levels of pollution or impacts reaching the water resources in order to prevent the threshold being reached. This includes managing the impacts of land use activities. Resource Quality objectives (RQOs) are the management targets set for water resources in order to prevent the threshold being reached. As effects of climate change are starting to be noticed, it is ever more pertinent to manage and mitigate the impacts to water resources in order to prevent water becoming a more scarce resource.

Poor quality or contaminated water requires treatment before it can be used. If the water is significantly contaminated it will require expensive and complex treatment before it can be used e.g. for drinking, irrigation, processing and manufacture. This increases the cost of the water and increases demand on other resources e.g. electricity in order to treat the water.

1.4 Water quality

1.4.1 Water Quality Allocation Plan - Translating in-river RWQOs to catchments targets

Translating the in-river RWQOs to water quality targets for different pollution sources, requires the development of a Water Quality Allocation Plan (DWAF, 2003, Rossouw et al, 2008). The inputs to a Water Quality Allocation Plan are the RWQOs for each river reach or management unit, and the

outputs of the plan are the waste loads that are allocated to different waste producing sectors and/or individual sources.

The development of sectoral or source specific implementation plans are not components of a Water Quality Allocation Plan and it is normally left to the sector or an individual source to show what measures they would implement to meet the requirements of the load allocated to them. For example, in the Selati River there are several sources of waste. These include background loads from the catchment, and loads from the mines, urban stormwater runoff, WWTWs, etc.

In the Water Quality Allocation Plan all the sources need to be accounted for, and the allocation of waste loads must be done so that the in-river RWQOs are met. If the sum of all the waste loads exceed the in-river RWQO, then waste loads allocated to different sources need to be reduced. It is prudent not to allocate all the waste loads to meeting the in-river RWQOs and to keep some in reserve for future developments in the catchment. Alternatively, when future developments take place, a re-allocation of waste loads can be done (as one would do when re-allocating water quantity to different users) or the new development can "purchase" waste loads from other users.

As the effluent discharge from different land uses is governed by different legislation, it is important that the overall Water Quality Allocation Plan be compiled in an integrated manner considering all sources of pollution.

It is recommended that a Water Quality Allocation Plan be developed that accounts for the pollution loads from all the sources in the lower Olifants River, in order to determine the allowable waste loads from WWTWs and urban stormwater runoff sources, in order to ensure the RQOs are achieved.

1.4.2 Monitoring

The old adage that you cannot manage what you do not measure still holds true. There is an urgent need for the local authorities to initiate and strengthened monitoring in their urban areas, and to strengthen and consolidate information management systems. Adaptive management of urban stormwater is based upon the support of monitoring networks and systems. This objective includes building capacity in urban pollution management through education, training, and knowledge transfer.

1.4.2.1 Compliance monitoring

The low Green Drop scores for monitoring is an indication that monitoring data is not submitted to DWS, either because monitoring is done but the results are not submitted, or no monitoring is being done. The Local Municipalities cannot improve operations at their respective wastewater treatment works if they don't monitor their effluent discharge volumes and quality, and compare these to their water use licence conditions. At the very least, effluent discharge monitoring should be conducted as specified in water use licence conditions, and the results reported to the Green Drop system.

1.4.2.2 Urban catchment monitoring

Local Municipalities cannot manage the impacts on receiving rivers of dry-weather flow, and stormwater runoff, unless they start to monitor the quantity and quality in their urban streams and rivers. A good strategy is to start with simple monitoring (see suggestions below) and to expand this as the need for better data arises, and as resources (funding and skilled staff) becomes available.

Visual monitoring - It is recommended that a visual monitoring system be designed to visually inspect urban streams and rivers for indicators of water pollution, and where necessary, report incidents and initiate remediation measures. It is recommended that a fixed-point network be designed with visual monitoring at key points in the system. An example of a Visual Assessment form is included in Annexure B. No specific training is required and the programme can be expanded to include simple in-situ measurements.

Urban stream water quality monitoring - *It is recommended that an urban stream water quality monitoring programme be designed to monitor the quality of key urban streams.* The constituents to be monitored should at least include in situ measurements of water temperature, pH, electrical conductivity, and water clarity. A hand-held field instrument to measure these constituents is fairly inexpensive (< R10 000). The ideal would be to also monitor dissolved oxygen as a measure of fitness for aquatic ecosystems and the organic load but such an instrument is expensive (> R40 000). Water samples should be collected and analysed for the constituents listed in the tTable follows.

Table 1: Constituents recommended for an urban stream water quality monitoring programme

Constituent	Motivation
Physical properties	
Suspended sediment concentration	The total suspended solids (TSS) concentration is a measure of the amount of material suspended in water. It affects the clarity of water, can smother habitats when it settles out, can affect the water temperature which is detrimental to temperature sensitive organisms, and pollutants can adhere onto the suspended particles. It can also block irrigation equipment and at very high concentrations, smother fish. SS has been identified as a concern in the RQO project (DWA).
Turbidity	Is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in the water. Affects water clarity and temperature (see effects of TSS for impacts).
Electrical conductivity	Indicates the amount of total dissolved salts (TDS), or the total amount of dissolved ions in the water. The effects of the TDS are governed by the constituent inorganic salts and it affects the metabolism of organisms. Secondary effects include those on water chemistry, which in turn affect the fate and impact on the aquatic environment of other chemical constituents or contaminants.
Ph	The pH value is a measure of the hydrogen ion activity in a water body which is indicative of the acidity or alkalinity of a water body
Nutrients	
Ammonium-nitrogen	Ammonium can be present in solution as the free, un-ionised form (NH_3) or in the ionised form as ammonium ion (NH_4^*) . The toxicity of ammonia to aquatic organisms is directly related to the concentration of the unionised form (NH_3) and is affected by water temperature and pH. The ammonium ion contributes to eutrophication. High ammonium is an indication of sewage pollution.
Nitrate-nitrogen	Nitrates are naturally present in aquatic ecosystems. High nitrate concentrations could negatively impact an aquatic ecosystem's health because high concentrations can stimulate excessive growth of aquatic plants and algae.
Ortho-phosphate	Phosphates occur in aquatic environments in numerous organic and inorganic dissolved forms. High concentrations can stimulate excessive growth of aquatic plants and algae.
Organic	
Chemical oxygen demand	COD indirectly measures the amount of organic compounds and consequently pollutants present in a water body that consume oxygen when it decomposes. High COD is indicative of pollution with domestic or industrial wastewater.
Human health	
Faecal coliforms or e coli	Faecal coliforms are primarily used as an indicator of faecal pollution and are mainly used for the assessment of faecal pollution from wastewater. Used to assess risk to recreational water users.

Metals can be added to detect the impacts of mining and industrial pollution.

Water samples should be analysed at a chemical laboratory and Lepelle Northern Water probably has a good laboratory at the Phalaborwa WTW.

Water samples should initially be collected at a monthly frequency provided there is flowing water at the stream/river sampling points.

Water quality data should be stored in a secure database and the chemical analysis results should be compared to urban quality guidelines to assess the risk to aquatic ecosystems and human health.

It is further recommended that good international practices as described in the Department of Water (2009) and Smith et al (1989) be used to design the water quality monitoring programmes:

- Develop the goals and objectives. Realistic, affordable and sustainable objectives need to be set by the key role players.
- Detailed list of monitoring points consolidate sampling points of different organisations. There
 is a need to consolidate monitoring point in order to eliminate overlaps or duplicate points and
 if needed, add monitoring points at locations of interest.
- Confirm statistical design criteria. The data collected must be able to satisfy the information requirements for the different role players and the need to detect trends at a predefined level of confidence.
- The provisional list of variables needs to be motivated and linked to the set goals and objectives.
- Identify water testing laboratory. Currently different laboratories are used by the different monitoring parties and the results are not always comparable. It has been proposed that one laboratory be used for both the bacteriological analysis as well as the other constituents.
- Confirm appropriate analysis methods for the final list of variables taking into account the laboratory detection limits and typical concentrations encountered in the lower Olifants River catchment.
- Obtain quotes for the analysis of the different variables from different laboratories. This is required in order to budget for the implementation of the sampling programme.
- Confirm sample submission procedures and results transmission from the laboratory to the coordinator.
- Recommend field samplers and training/qualification requirements. People need to be identified that will collect the samples on a regular basis. To promote confidence in the data, it is important that the water samples be taken consistently in the correct method and therefore the field samplers must at least have some basic training in sampling techniques. This is also a quality control measure.
- Develop a draft, initial sampling schedule that needs to be reviewed and if necessary, updated on an annual basis. This is crucial as the samplers need to plan their activities around the sampling schedule and all their other, work related responsibilities.
- Develop a route map for sampling. A route map will enable the samplers to plan their sampling so that the bacteriological samples can reach the laboratory within the prescribed time limits. It may not be possible for one person to do all the sampling on one day and coordination within the sampling group is essential and again linked to the sampling schedule.
- Confirm field sampling and measurement procedures to ensure that all the samplers use the same methods and procedures.

- Identify sampling equipment and field measurement instruments to ensure that all the equipment is available or if not, can be acquired prior to the implementation phase of the project.
- Confirm sample preservation needs for the chemical samples (if required) and sample transport
 procedures to ensure that the water samples collected are viable for analysis and that the
 result are trustworthy.
- Develop appropriate quality control / quality assurance procedures to promote confidence in the data and to prevent samplers from taking shortcuts.
- Recommend a data storage/retrieval and management system. Ideally all the key role players should be able to retrieve the data as and when needed.
- Recommend appropriate data analysis procedures and display options.
- Compile a budget for the programme. A budget should include the running costs of the samplers, equipment required for sampling, water sample analysis costs, data management and project coordination costs.
- Programme coordination. Not only should the programme be coordinated to ensure that the objectives of all the key role-players are met, but supervision of the programme is crucial to ensure that it runs smoothly and in a sustainable manner.

1.4.3 Urban & peri-urban water quality guidelines

The term "water quality" describes the physical, chemical, biological and aesthetic properties of water that determine its fitness for a variety of uses and for the protection of aquatic ecosystems. Many of these properties are controlled or influenced by constituents that are either dissolved or suspended in water.

It is recommended that initially the water quality of the Mopani DM be evaluated from two perspectives, each of which makes use of a different indicator derived from Department of Water and Sanitation guidelines. These perspectives acknowledge the dual importance and interdependence of people and the freshwater environment.

- Public health (recreational use) Microbiological data (E.coli) should be used to evaluate the suitability of urban and peri-urban waters for intermediate contact recreational use. The guideline stipulates that samples should not exceed 1000 indicator organisms per 100 ml. Although referred to as recreational, this includes domestic use e.g. washing in rivers, bathing and water for cooking/cleaning.
- ii. Ecosystem health It is recommended that the guidelines to protect the aquatic ecosystems be based on dissolved oxygen, and nutrients, electrical conductivity, and total suspended solids. It is recommended that consideration be given to adopting the guidelines used by the City of Cape Town for evaluating their inland waters (Anchor Environmental Consultants et al., 2012).

2 Concluding remarks

Water quality in the Mopani DM would be affected by the increase in water temperature that would affect the growth and/or decay rates of aquatic flora and organisms, and by an increase in rainfall intensity and probably flash floods that could affect existing pollution control dams. The current stormwater management requires review and integration into the land use planning process to ensure improved management especially of water quality reaching the receiving water sources.

Monitoring of water quality in urban areas is the responsibility of local authorities and there is an urgent need for the two LAs to implement monitoring of their wastewater discharges, and the quality of urban and peri-urban streams and rivers. Similarly, it is the responsibility of the LMs to ensure their discharge, especially stormwater, does not exceed the RQOs.

3 References

- Anchor Environmental Consultants, The Freshwater Consulting Group and 3rd Quarter 2012. Development of a Water Quality Index and Related Reporting Tools and Information for Inland and Coastal Waters of the City of Cape Town. Application of the City of Cape Town Water Quality Index to historical water quality data: 1978 to 2011. Prepared for the City of Cape Town, July 2012.
- Armitage, N., Vice, M., Fisher-Jeffes, I., Winter, K., Spiegel, A., & Dunstan, J. (2013). Alternative Technology for Stormwater Management. The South African Guidelines for Sustainable Drainage Systems. Report to the Water Research Commission by University of Cape Town. WRC Report No. TT 558/13.
- Armitage, N., Fisher-Jeffes, L., Carden, K., Winter, K., Naidoo, V., Spiegel, A., Mauck, B., & Coulson, D. (2014). Water Sensitive Urban Design (WSUD) for South Africa: Framework and Guidelines. Report to the Water Research Commission by Urban Water Management Research Unit Departments of Civil Engineering, Environmental & Geographical Science, Social Anthropology, and Political Studies, University of Cape Town. WRC Report No. TT 588/14.
- Ashton, P.J. (2009). An overview of the current status of water quality in South Africa and possible future trends of change. Unpublished report by the Water Ecosystems and Human Health Research Group, Natural Resources and the Environment Unit, CSIR, Pretoria.
- Department of Water Affairs (DWA). (2009). Adopt-a-River Programme Phase II: Development of an Implementation Plan. Manual for Volunteer Monitoring. Prepared by K. Versfeld and J.N. Rossouw for Department of Water Affairs, Pretoria.
- Department of Water Affairs (DWA). (2011). Planning Level Review of Water Quality in South Africa. Directorate Water Resource Planning Systems: Water Quality Planning. Resource Directed Management of Water Quality. Sub-series No.WQP 2.0. Pretoria.
- Department of Environmental Affairs (DEA). (2013). Long-Term Adaptation Scenarios Flagship Research Programme (LTAS) for South Africa. Summary for Policy-Makers. Pretoria.
- Department of Water Affairs (DWA). (2013). *Climate change Water Quality Assessment*. Prepared by JN Rossouw as part of the Climate Change Status Quo Analysis and a Climate Change Strategy for Water Resources project.
- Department of Water Affairs (DWA). (2013). Green Drop Report. Volume 1: Municipal and Private Waste Water Systems.

- Department of Water and Sanitation (DWS). (2014). Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): Resource Quality Objectives and Numerical Limits Report. Report No.: RDM/WMA04/00/CON/RQO/0214. Chief Directorate: Water Ecosystems. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR492/14.(vi). Pietermaritzburg.
- Department of Water and Sanitation (DWS). (2015). *Proposed classes and resource quality objectives of the water resources for the Olifants catchment*. Government Notice No. 619. Government Gazette, 39004 of 20 July 2015.
- H. van den Berg & Braid, S. (2017). Development of Sustainable River-Based Urban Planning Guideline for Sub-Saharan Africa. Guidelines compiled for ICLEI BY Aurecon South Africa. Project no. 113163, Pre-Final Draft Report 2.
- Rossouw, J.N., Kamish, W., & Görgens, A.H.M. (2008). *Technical Instruments to Support Water Quality Use Allocation*. WRC Report No. TT 363/08, Water Research Commission, Pretoria.
- Smith, D.G., McBride, G.B., Bryers, G.G., Davies-Colley, R.J., Quinn, J.M., & Vant, W.N. (1989). A National Water Quality Network for New Zealand. Consultancy Report 8016/2. Prepared for The Manager, Water Resources Survey, DSIR, May 1989.

Vermeulen, W. Retired CEO of Lepelle Water, 2017. Personal Communication.

Annexure A: Resource quality objectives

SUMMARY OF THE RQOS FOR THE SITES WITHIN THE BA-PHALABORWA AND MARULENG LOCAL MUNICIPAL AREAS, EXCLUDING KRUGER NATIONAL PARK

Municipality	IntegratedWaterBiophysicalQuaternaryUnit ofResourceBiophysicalQuaternaryAnalysisClass forNode NameCatchment(IUA)IUAVV				inates	River Name / description of point	Ecological Category to be maintained	Natural MAR (million m ³ /a)	EWR as % of natural MAR)	
Maruleng Local Municipality	10 Lower Olifants	11	HN87	B60J	-24,458611	30,8275	Sandspruit, including Rietspruit and Qunduhlu	В	-	-
			EWR site - 12 (88)	B60J			Blyde	В	383.7	27.9
			HN89	B60J	-24,31388889	30,85594444	Blyde (confluence with Olifants)	С	385.7	16.13
	10 Lower Olifants	11	EWR site - 11 (96)	B71H, J	24°18'25.90"S	30°47'9.90"E	Olifants (confluence with Blyde) (Upstream confluence)	D	1321.8	11.2 (D)
	10 Lower Olifants	11	HN97	В72А			Makhutswi, including Moungwane and Malomanye	C	38.0	12.89

			HN98	B72C			Olifants (outlet - outlet of IUA10)	C	1755.5	18.07
Ba- Phalaborwa Local Municipality	11 Ga-Selati River	111	HN99	B72E	-24,091944	30,275278	Ngwabatse (confluence with Ga- Selati)	D	25.7	9.05
			HN100	B72G	-24,123889	30,353611	Ga-Selati (outlet of quaternary)	С	13.5	19.59
			EWR site - 14a (101)	B72H	23°59'29.40"S	30°40'60.00"E	Ga-Selati (2km down Mica road bridge)	С	52.2	19.59
			HN102	B72J			Molatle (confluence with Ga- Selati)	В	11.4	16.67
	11 Ga-Selati River	111	EWR site - 14b (103)	В72К	24° 1'21.00"S	31° 8'48.00"E	Ga-Selati (Phalaborwa Mine)	D	72.7	11.99 (D)
	11 Ga-Selati River		HN104	В72К	-24,034167	31,123611	Ga-Selati (outlet of quaternary - outlet of UIA11)	D	72.7	11.95 (D)

Both	12	11	EWR site 13	B72D	24° 7'36.00"S	31°1'1.00"E	Olifants	С	1760.7	11.36
	Lower		(105)				(Downstream			
	Olifants						of Blyde			
	within						confluence)			
	Kruger									
	National									
	Park									

RWQOS FOR SPECIFIC SITES: QUANTITY - THESE ARE APPLICABLE TO ONLY CERTAIN RQO SITES

lity	Unit of (IUA) il Node e		cal Category maintained				Water Qu	antity		
Municipality	Integrated L Analysis (Biophysical Name	Ecological Ca to be maint	Compo- nent	Sub Compo- nent	RQO	Indicator/ measure	Numerical Limits		
Maruleng	10	EWR	D	Quantity	Low and	Low flows must	EWR	Maintenance low	Drought	Freshets
Local	Lower	site -			High	support the	maintenance	flows (m3/s)	flows (m3/s)	(m3/s)
Municipality	Olifants	11 (96)			Flows	ecosystem	low and high	(Percentile)	(Percentile)	(Percentile)
						structure and	flows	Oct 2.959 (80)	1.576 (99)	0.340 (99)
						function.	and drought	Nov 4.420 (80)	2.353 (99)	1.713 (99)
							flows:	Dec 5.358 (80)	2.853 (99)	2.760 (99)
							Olifants EWR11	Jan 6.468 (80)	3.444 (99)	1.426 (99)
							in	Feb 8.217 (80)	4.376 (99)	5.091 (99)
						High flows	B71J VMAR =	Mar 7.345 (80)	3.911 (99)	1.426 (99)
						must be	1321.9x10 ⁶ m ³	Apr 6.450 (80)	3.434 (99)	0.701 (99)
						maintained for	PES=D category	May 5.095 (80)	2.713 (99)	
						ecosystem		Jun 4.139 (80)	2.204 (99)	
						functioning.		Jul 3.396 (80)	1.808 (99)	
								Aug 2.886 (80)	1.537 (99)	
								Sep 2.623 (80)	1.397 (99)	

10	HN97	С	Quantity	Low	Low flows must	EWR	Maintenance low	Drought flows	
Lower		•	Quantity	Flows	be	maintenance	flows (m ³ /s)	(m ³ /s)	
Olifants					maintained to	low and drought	(Percentile)	(Percentile)	
					provide for	flows: Makhutsi	Oct 0.130 (50)	0.000	
					basic	River	Nov 0.144 (50)	0.004 (99)	
					human needs.	in B72A VMAR =	Dec 0.173 (50)	0.004 (99)	
						38.01x10 ⁶ m ³	Jan 0.258 (50)	0.004 (99)	
						PES=C	Feb 0.435 (50)	0.000	
						category	Mar 0.415 (50)	0.000	
						5 ,	Apr 0.330 (50)	0.000	
							May 0.236 (50)	0.000	
							Jun 0.206 (50)	0.000	
							Jul 0.179 (70)	0.000	
							Aug 0.159 (60)	0.000	
							Sep 0.142 (50)	0.000	
	HN98	С	Quantity	Low and	Low flows must	EWR	Maintenance low	Drought flows	Freshets
	111170	C	Quantity	High	be	maintenance	flows (m ³ /s)	(m^3/s)	(m ³ /s)
				Flows	maintained so	low and high	(Percentile)	(Percentile)	(Percentile)
				1 (0 % 5	that	flows	Oct 5.645 (60)	2.148 (99)	0.654 (99)
					they provide	and drought	Nov 8.016 (70)	2.978 (99)	3.383 (99)
					for	flows:	Dec 9.747 (70)	3.573 (99)	5.806 (90)
					the ecosystem.	Olifants in B72C	Jan 11.956 (70)	4.341 (99)	3.425 (99)
					the cosystem.	VMAR =	Feb 15.848 (70)	5.713 (99)	12.616 (90)
						1755.5x10 ⁶ m ³	Mar 14.484 (70)	5.219 (99)	3.425 (99)
					High flows must	PES=C category	Apr 13.039 (60)	4.724 (99)	1.824 (99)
					provide for the	5 c category	May 10.333 (60)	3.777 (99)	
					ecosystem.		Jun 8.401 (60)	3.112 (99)	
							Jul 6.783 (60)	2.543 (99)	
							Aug 5.729 (70)	2.177 (99)	
							Sep 5.194 (60)	1.997 (99)	
					l	1			

Ba-	11	EWR	D	Quantity	Low	Low flows are	EWR	Maintenance low	Drought flows
Phalaborwa	Ga-	site -			Flows	important for	maintenance	flows (m ³ /s)	(m ³ /s)
Local	Selati	14b				the	low and drought	(Percentile)	(Percentile)
Municipality	River	(103)				maintenance of	flows: Ga-Selati	Oct 0.122 (70)	0.001 (99)
manieipariej						the	EWR14b in B72K	Nov 0.138 (60)	0.001 (99)
						ecosystem.	VMAR =	Dec 0.192 (60)	0.001 (99)
						-	72.74x10⁰m³	Jan 0.350 (50)	0.001 (99)
							PES=D category	Feb 0.744 (60)	0.003 (99)
								Mar 0.608 (50)	0.003 (99)
								Apr 0.378 (70)	0.002 (99)
								May 0.200 (70)	0.001 (99)
								Jun 0.178 (70)	0.001 (99)
								Jul 0.156 (70)	0.001 (99)
								Aug 0.141 (70)	0.001 (99)
								Sep 0.132 (7)	
	11	HN104	D	Quantity	Low	Low flows are	EWR	Maintenance low	Drought flows
	Ga-				Flows	important for	maintenance	flows (m ³ /s)	(m ³ /s)
	Selati					the	low and drought	(Percentile)	(Percentile)
	River					maintenance of	flows: Ga-Selati	Oct 0.122 (60)	0.001 (99)
						the	EWR14b in B72K	Nov 0.138 (60)	0.001 (99)
						ecosystem.	VMAR =	Dec 0.192 (60)	0.001 (99)
							72.74x106m3	Jan 0.350 (50)	0.001 (99)
							PES=D category	Feb 0.744 (60)	0.003 (99)
								Mar 0.608 (50)	0.003 (99)
								Apr 0.378 (70)	0.002 (99)
								May 0.200 (60)	0.001 (99)
								Jun 0.178 (70)	0.001 (99)
								Jul 0.156 (70)	0.001 (99)
								Aug 0.141 (70)	0.001(99)
								Sep 0.132 (70)	

Both	12	EWR	С	Quantity	Low and	Low flows must	EWR	Maintenance low	Drought flows	Freshets
	Lower	site 13			High	be	maintenance	flows (m ³ /s)	(m ³ /s)	(m ³ /s)
	Olifants	(105)			Flows	improved to	low and high	(Percentile)	(Percentile)	(Percentile)
	within					maintain	flows	Oct 3.940 (70)	2.149 (99)	0.598 (99)
	Kruger					ecosystem	and drought	Nov 5.592 (70)	2.979 (99)	3.093 (99)
	National					structure and	flows:	Dec 6.802 (80)	3.576 (99)	5.317 (90)
	Park					function.	Olifants EWR13	Jan 8.351 (70)	4.347 (99)	3.141 (99)
							in	Feb 10.994 (70)	5.683 (99)	11.515 (90)
							B72B VMAR =	Mar 10.125 (70)	5.231 (99)	3.141 (99)
							1762.2x106m3	Apr 9.105 (70)	4.729 (99)	1.665 (99)
						High flows	PES=C category	May 7.209 (70)	3.778 (99)	
						must be		Jun 5.860 (70)	3.112 (99)	
						maintained to		Jul 4.732 (70)	2.544 (99)	
						support		Aug 3.998 (70)	2.179 (99)	
						ecosystem		Sep 3.625 (70)	1.999 (99)	
						structure and			· · ·	
						function.				

RWQOS FOR SPECIFIC SITES: QUALITY THESE ARE ONLY DETERMINED FOR CERTAIN SITES.

ality	l Unit (IUA)	ical ame	cal to be ned			Water	Quality	
Municipality	Integrated Unit of Analvsis (IUA)	Biophysical Node Name	Ecological Category to be maintained	Compo- nent	Sub Component	RQO	Indicator/ Measure	Numerical Limits
Ba- Phalaborwa Local Municipality	11 Ga- Selati River	EWR site - 14b (103)	D	Quality	Salts	Salts should be improved to support the ecosystem.	Electrical conductivity*	≤ 111 mS/m
					System Variables	Sedimentation must not excessively impact on habitat state.	Suspended solids*	≤ 50.0 mg/L
					Toxins	Toxicity must not pose a threat to local users.	F* Al* As* Cd hard* Cr(VI)* Cu hard* Hg* Mn* Pb hard* Se* Zn* Chorine* Endosulfan* Atrazine*	 ≤ 2.50 mg/L ≤ 0.105 mg/L ≤ 0.095 mg/L ≤ 3.0 µg/L ≤ 121 µg/L ≤ 6.0 µg/L ≤ 0.97 µg/L ≤ 0.990 mg/L ≤ 9.5 µg/L ≤ 0.022 mg/L ≤ 25.2 µg/L ≤ 3.1 µg/L free Cl ≤ 0.13 µg/L ≤ 78.5 µg/L

	11 Ga-	HN104	D	Quality	Salts	Salts should be improved to support	Electrical conductivity* Sulphates*	≤ 111 mS/m ≤ 500 mg/L
	Selati River					the ecosystem.		
					System Variables	Sedimentation must not excessively	Alkalinity* Turbidity*	≥ 60 mg/L CaCO3 ≤ 10 NTU
						impact on habitat state.	Temperatures* Dissolved oxygen*	\leq abs(dev from ambient) 4.0 \geq 6.5 mg/L O ₂
					Toxins	Toxicity must not pose a threat to local users.	F* Al* As* Cd hard* Cr(VI)* Cu hard* Hg* Mn* Pb hard* Se* Zn* Chorine* Endosulfan*	 ≤ 2.50 mg/L ≤ 0.105 mg/L ≤ 0.095 mg/L ≤ 3.0 µg/L ≤ 121 µg/L ≤ 6.0 µg/L ≤ 0.97 µg/L ≤ 0.970 mg/L ≤ 9.5 µg/L ≤ 0.022 mg/L ≤ 3.1 µg/L free Cl ≤ 0.13 µg/L
Both	12 Lower Olifants within Kruger National Park	EWR site 13 (105)	C	Quality	System Variables	Sediment concentrations should not reach levels where instream sedimentation excessively impacts on the instream habitat or where suspended sediments negatively impact on fitness for use for water institutions.	Atrazine* Suspended solids*	≤ 78.5 µg/L ≤ 25.0 mg/L

The Role of Municipal Spatial Planning in Water Quality Impacts

RWQOS FOR SPECIFIC SITES: **BIOTA** - THESE ARE ONLY DETERMINED FOR SPECIFIC SITES.

Municipality	of Analysis (IUA)	iical ame	C Ecological Category to be maintained	Instream Ha	abitat and Biota	Riparian zone habitat		
		Biophysical Node Name		RQO	Numerical Limits	RQO	Numerical Limits	
Ba- Phalaborwa Local Municipality		EWR site - 14b (103)		Instream habitat must be in a largely modified or better condition. Instream biological assemblages must be in a largely modified or better condition. Low and high flows must be suitable to maintain the river habitat and ecosystem condition. <u>Water quality:</u> Toxicity must not pose a threat to local users and the ecosystem	Instream Habitat Integrity category: $\geq D (\geq 42)$ Fish ecological category: $\geq D (\geq 42)$ Macro-invertebrate ecological category: $\geq D (\geq 42)$ Instream Ecostatus category: \geq D (≥ 42) Hydrological category: $\geq D (\geq 42)$ Water Quality category: $\geq D (\geq 42)$	The riparian zone must be in a largely modified or better condition. Riparian vegetation must be in a better than largely modified condition Low and high flows must be in a largely modified or better condition.	Riparian Zone Habitat Integrity category \ge D (\ge 42) Riparian ecostatus category: \ge C/D (\ge 58) Hydrological category \ge D (\ge 42)	
Both	12 Lower Olifants within Kruger National Park	EWR site 13 (105)	С	Instream habitat must be in a moderately modified or better condition to support ecosystem processes. Instream biological assemblages must be in a moderately modified or better condition. The habitat requirements of species of special	Instream Habitat Integrity category: \geq C (\geq 62) Fish ecological category category: \geq C (\geq 62) Macro-invertebrate ecological category category: \geq C (\geq 62) Instream Ecostatus category: \geq C (\geq 62) Suitable instream habitat	The riparian zone must be in a better than moderately modified condition. Riparian vegetation must be in a close to natural condition.	Riparian Zone Habitat Integrity category \ge B/C (\ge 78) Riparian ecostatus category: \ge B (\ge 82) Hydrological category \ge C (\ge 62)	

ocological importance must	conditions for > 5	Low and high flows
ecological importance must		-
be provided for to ensure	Hippopotami	must be in a
viable and sustainable	Habitat for a minimum of 45	moderately
populations.	aquatic bird	modified
Low and high flows must be	species.	condition.
suitable to maintain the	Hydrological category: \geq C (\geq	
river habitat and ecosystem	62)	
condition.	Water Quality category: \geq C (\geq	
Water quality:	62)	
Sediment concentrations		
must not reach levels where		
instream sedimentation		
excessively impacts on the		
instream habitat or where		
suspended sediments		
negatively impact on fitness		
for use for water		
institutions.		

ANNEXURE B: Example of a visual assessment form

Water Affairs REPUBLIC OF SOUTH AF		Visual ass	Water Qu sessmei		-	-	River BERG	
Sampling poi					- 1			
Da				me				
Sampler nam								
Weather condition	ons (chec	k one per cate	egory)					
Air temp		Cold (< 10°C) Cool (10-20)°C))°C) Warm (20-30°C)		Hot (>30°C)	
Percentage cloue		0-25%	25-50%		50-7	5%	75-100%	
Number of day		(Within last 7						
	ast rain	days)						
Wind	None	Light	Moderate	e	Stro	ong	Gale force	
River state (chec	k one per	category)						
Water clarity	Clear	Slightly mud	dy Mode	rately	muddy	Ve	ry muddy	
Colour	Colourle		Tea coloured	Í	Gree		Brown	
Flow	Still/Calm	Slow flowing	g Mode	erate f	lowing	Fas	st flowing	
Algae	on rocks	None visible	e So	me vi	sible	Lo	ts visible	
	Foam	None visible	e So	me vi	sible	Lo	ts visible	
	ly sheen		e So	me vi	sible	Lo	ts visible	
Odour N	lo smell	Fishy	Ro	tten e	eggs	Musty	Chlorine	
Paper	crates, s		ene blocks or pellets, bottles, traws, straps, ropes, nets. ng, wrappers, newspapers,		None	Some	Lots	
	fliers, car	rdboard, food cor	ntainers		None	Some	Lots	
Metal		il, bottle tops, nur proken windows	nber plates	-	None	Some	Lots	
Glass Garden refuse		ittings, leaves, br	anchos		None	Some	Lots	
Building rubble		lanks, lumps of c		-	None None	Some Some	Lots	
Fabric		ing, rags	Uncrete		None	Some	Lots	
Animals		arcasses, skeleto	ons	-	None	Some	Lots	
Automotive		and a state of the state of the state of the			None	Some	Lots	
In-situ measuren Water tem Electrical con	nents perature	°C						
	TDS pH	mg/l						
Dissolved								
Dissolved								
	rity tube							
Notes			•					
Office use only	Data capture	ed Person			T r	Date		

AWARD is a non-profit organisation specialising in participatory, research-based project implementation. Their work addresses issues of sustainability, inequity and poverty by building natural-resource management competence and supporting sustainable livelihoods. One of their current projects, supported by USAID, focuses on the Olifants River and the way in which people living in South Africa and Mozambique depend on the Olifants and its contributing waterways. It aims to improve water security and resource management in support of the healthy ecosystems to sustain livelihoods and resilient economic development in the catchment.

P O Box 1919, Hoedspruit 1380, Limpopo, South Africa **T** 015-793 0503 **W** award.org.za Company Reg. No. 98/03011/08 Non-profit org. Reg. No. 006 - 821

About USAID: RESILIM-O

USAID: RESILIM-O focuses on the Olifants River Basin and the way in which people living in South Africa and Mozambique depend on the Olifants and its contributing waterways. It aims to improve water security and resource management in support of the healthy ecosystems that support livelihoods and resilient economic development in the catchment. The 5-year programme, involving the South African and Mozambican portions of the Olifants catchment, is being implemented by the Association for Water and Rural Development (AWARD) and is funded by USAID Southern Africa. Copyright © 2018 The Association for Water and Rural Development (AWARD). This material may be used for non-profit and educational purposes. Please contact the authors in this regard, at:

info@award.org.za

The content of this publication does not necessarily reflect the views of AWARD, USAID or the United States Government.

Acknowledgements: Project funding and support

The USAID: RESILIM-O project is funded by the U.S. Agency for International Development under USAID/ Southern Africa RESILIENCE IN THE LIMPOPO BASIN PROGRAM (RESILIM). The RESILIM-O project is implemented by the Association for Water and Rural Development (AWARD), in collaboration with partners. Cooperative Agreement nr AID-674-A-13-00008

