

# Review of Environmental Water Requirements & Related Information for the Olifants Catchment

Alison Joubert & Cate Brown March 2014



USAID SOUTHERN AFRICA



## Acknowledgements

The USAID: RESILIM-O project is funded by the U.S. Agency for International Development under USAID/Southern Africa RESILIENCE IN THE LIMPOPO BASIN PROGRAM (RESILIM). The RESILIM-O project is implemented by the Association for Water and Rural Development (AWARD), in collaboration with partners. Cooperative Agreement nr AID-674-A-13-00008.

© Association for Water and Rural Development (AWARD)

Authors Alison Joubert & Cate Brown Southern Waters Ecological Research and Consulting CC.

March 2014

Association for Water and Rural Development (AWARD) P O Box 1919 Hoedspruit 1380 Limpopo, South Africa T 015-793 0503 W award.org.za

Company Reg. No. 98/03011/08



## Table of Contents

| Та              | ble of Contents                                         |  |
|-----------------|---------------------------------------------------------|--|
| List of Figures |                                                         |  |
| List of Tables  |                                                         |  |
| Ac              | 8 ronyms                                                |  |
| 1               | Introduction                                            |  |
|                 | 1.1 The RESILIM-O project                               |  |
|                 | 1.2 The RELIMI-O, S&EWR workpackage9                    |  |
|                 | 1.2.1 RELIMI-O, S&EWR activities10                      |  |
|                 | 1.2.2 RESILIM-O, S&EWR approach and data requirements10 |  |
|                 | 1.3 Purpose of this report                              |  |
|                 | 1.4 General comments                                    |  |
| 2               | Key processes, methods and concepts14                   |  |
|                 | 2.1 Environmental Water Requirements14                  |  |
|                 | 2.2 Water resource protection in South Africa14         |  |
|                 | 2.2.1 Classification14                                  |  |
|                 | 2.2.2 Management Class15                                |  |
|                 | 2.2.3 Resource Quality Objectives16                     |  |
|                 | 2.2.4 The Reserve16                                     |  |
|                 | 2.3 Water resource protection in Mozambique17           |  |
|                 | 2.4 Present Ecological Status                           |  |
|                 | 2.5 Indicators                                          |  |
|                 | 2.6 EWR methods used in South Africa18                  |  |
|                 | 2.6.1 Assessment levels                                 |  |
|                 | 2.6.2 EWR assessment methods for rivers19               |  |
| 3               | DRIFT                                                   |  |
|                 | 3.1 Summary of the DRIFT Process                        |  |
|                 | 3.1.1 Indicators22                                      |  |
|                 | 3.1.2 Linked indicators23                               |  |
|                 | 3.1.3 Response curves23                                 |  |
|                 | 3.1.4 Scoring system used25                             |  |
|                 | 3.2 The DRIFT-DSS                                       |  |
| 4               | Overview of the study area                              |  |
|                 | 4.1 Industry and demographics                           |  |
|                 | 4.1.1 South Africa32                                    |  |
|                 | 4.1.2 Mozambique                                        |  |



|   | 4.2 Water use and related infrastructure                                         |
|---|----------------------------------------------------------------------------------|
|   | 4.2.1 South Africa                                                               |
|   | 4.2.2 Mozambique                                                                 |
| 5 | Previous EWR-related studies in the Olifants Basin35                             |
|   | 5.1 Desktop assessments of Present Ecological State                              |
|   | 5.1.1 Results                                                                    |
|   | 5.2 River Health Programme (RHP)                                                 |
|   | 5.2.1 Results                                                                    |
|   | 5.3 Olifants Basin Comprehensive Reserve determination                           |
|   | 5.3.1 Environmental Water Requirements                                           |
|   | 5.3.2 Dependence on ecosystems42                                                 |
|   | 5.4 Dwars River Intermediate Reserve assessment                                  |
|   | 5.4.1 Environmental water requirements46                                         |
|   | 5.4.2 Cost benefit analysis47                                                    |
|   | 5.5 Rio dos Elefantes assessment                                                 |
|   | 5.5.1 EWR assessment results50                                                   |
|   | 5.5.2 Social assessment50                                                        |
|   | 5.5.3 Scenarios                                                                  |
|   | 5.6 Ecosystem Goods and Services (EGSA) project55                                |
|   | 5.6.1 Results                                                                    |
|   | 5.7 Reconciliation study                                                         |
|   | 5.7.1 Results                                                                    |
|   | 5.8 Classification (WRCS) 2011-2014                                              |
|   | 5.8.1 Environmental Water Requirements60                                         |
|   | 5.8.2 Ecosystem services61                                                       |
|   | 5.8.3 Scenarios61                                                                |
|   | 5.9 Overall summaries64                                                          |
|   | 5.10 Reports that will be used to generate the information listed in Table 1.267 |
| 6 | Approach to Activity 369                                                         |
|   | 6.1 Phase 1: Population and calibration of the DRIFT-DSS using existing EWRs69   |
|   | 6.1.1 Select focus site70                                                        |
|   | 6.1.2 Collate all relevant information70                                         |
|   | 6.1.3 Compile baseline daily flow records70                                      |
|   | 6.1.4 Identify disciplines70                                                     |
|   | 6.1.5 Identify indicators70                                                      |
|   | 6.1.6 Identify linked indicators70                                               |
|   | 6.1.7 Construct response curves to describe links71                              |
|   | 6.1.8 Construct daily flow sequences to match existing EWRs71                    |

| 6.1.9 Run flow sequences in DSS and compare with existing EWRs                 |
|--------------------------------------------------------------------------------|
| 6.1.10 Adjust response curves to meet existing EWR outcomes                    |
| 6.1.11 Cross-check and prepare DRIFT-DSS for Phase 271                         |
| 6.2 Phase 2: Capture WATRESs and analyse scenarios72                           |
| 6.2.1 Demonstrate DRIFT-DSS to WATRES workpackage72                            |
| 6.2.2 Identify additional indicators to represent WATRESs72                    |
| 6.2.3 Identify linked indicators72                                             |
| 6.2.4 Construct response curves73                                              |
| 6.2.5 Run EWR flow sequences in DSS73                                          |
| 6.2.6 Run flow sequences for additional scenarios in DSS                       |
| 7 Recommendations for RESILIM-O, S&EWR focus site(s)                           |
| 7.1 Summary of information available at EWR sites74                            |
| 7.2 Ranking of EWR sites                                                       |
| 7.3 Recommended focus site(s)                                                  |
| 8 References                                                                   |
|                                                                                |
| Appendix A: Illustrative example for stages 1, and 4-6 of Activity 3           |
| A.1 Example EWR site                                                           |
| A.2 Ecological status                                                          |
| A.3 Possible indicators                                                        |
| A.3.1 Flow indicators                                                          |
| A.3.2 Biotic indicators                                                        |
| A.4 Linked indicators                                                          |
| Appendix B:EWR results (.tab files and flood requirements) (Reserve studies)92 |
| A.5 Olifants Comprehensive Reserve                                             |
| A.5.1 IFR1 IFR estimate: PES = D, REC=C92                                      |
| A.5.2 IFR2 IFR estimate: PES = C, REC=B93                                      |
| A.5.3 IFR3 IFR estimate: PES = D, REC=C93                                      |
| A.5.4 IFR4 IFR estimate: PES = B, REC=B93                                      |
| A.5.5 IFR5 IFR estimate: PES = C, REC=B (but signed off REC=C)94               |
| A.5.6 IFR6 IFR estimate: PES=E, REC = D95                                      |
| A.5.7 IFR6B IFR estimate: PES=E, REC=C95                                       |
| A.5.8 IFR6C IFR estimate, PES=C, REC=B96                                       |
| A.5.9 IFR7 IFR estimate: PES=E, REC=D97                                        |
| A.5.10 IFR8 IFR estimate:: PES=D, REC=D98                                      |
| A.5.11 IFR9 IFR estimate: PES=D, REC=D98                                       |
| A.5.12 IFR10 IFR estimate: PES=D, REC=D99                                      |
| A.5.13 IFR11 IFR estimate: PES=E, REC=D99                                      |



| A.5.14 IFR12 IFR estimate: PES=B, REC=B1                 | 100 |
|----------------------------------------------------------|-----|
| A.5.15 IFR13 IFR estimate: PES=C, REC=B1                 | 100 |
| A.5.16 IFR14A IFR estimate: PES=C, REC=C1                | 101 |
| A.5.17 IFR16/17 IFR estimate: PES=C, REC=B1              | 102 |
| A.6 Dwars 1                                              | 106 |
| A.7 Elefantes 1                                          | 107 |
| opendix C: EWR results at nodes (Classification study) 1 | 108 |

## List of Figures

| Figure 3.3 | The relationship between severity ratings (and severity scores) and percentage of baseline as           |
|------------|---------------------------------------------------------------------------------------------------------|
| used in    | DRIFT and adopted for the DSS26                                                                         |
| Figure 3.4 | Arrangement of modules in the DRIFT-DSS and inputs required from external models                        |
| Figure 4.1 | The Olifants River Basin and RESILIM-O study area                                                       |
| Figure 4.2 | The cumulative capacity over time of slimes, tailings and other pollution_control dams in the           |
| Olifants   | 32 WMA                                                                                                  |
| Figure 4.3 | The cumulative capacity of dams in the Olifants WMA                                                     |
| Figure 5.1 | The Olifants River Basin and RESILIM-O study area showing the EWR Sites mentioned in Table 5.1          |
| and the    | RHP sites                                                                                               |
| Figure 5.3 | Olifants mainstem natural runoff, 1999 runoff and EWR requirements as MCM per year, plus a              |
| schema     | tic showing the position of the EWR sites                                                               |
| Figure 5.4 | Comprehensive EWR sites, the Dwars EWR, the Elefantes EWR study, and those added for                    |
| Classifi   | cation in 2011                                                                                          |
| Figure 5.5 | Summarised economic values for the two preferred scenarios from the Classification study 63             |
| Figure 5.6 | Relationship between the recommended Ecological Category and the $\ensuremath{EWR\_as}$ a percentage of |
| natural    | MAR, for the Olifants / Elefantes Reserves                                                              |
| Figure 5.7 | Lowflow for the lowest flow month as a percentage of naturalized monthly flow the lowest                |
| flow mo    | onth                                                                                                    |
| Figure 5.8 | Mainstem flow (MCM) for the Olifants and Elefantes, together with schematic of the river with           |
| main tr    | ibutaries and EWR sites                                                                                 |
| Figure 6.1 | Phase 1 activities                                                                                      |
| Figure 6.2 | Phase 2 activities                                                                                      |



## List of Tables

| Table 1.1 RESILIM-O themes                                                                                    |
|---------------------------------------------------------------------------------------------------------------|
| Table 1.2 Steps in the population and calibration of the DRIFT-DSS and the type of information needed to      |
| inform each step                                                                                              |
| Table 2.1 Requirements for ecological condition for the three Management Classes         15                   |
| Table 2.2 Definitions of the Present Ecological Status (PES) and Ecological Categories                        |
| Table 2.3 Comparative summary EWR methodologies used for the rivers                                           |
| Table 3.1 Examples of indicators used in the Okavango study to predict the biophysical and social impacts     |
| of development-driven flow changes23                                                                          |
| Table 3.2 DRIFT severity ratings and their associated abundances and losses         25                        |
| Table 3.3 Definitions of the Present Ecological State (PES) categories       27                               |
| Table 4.1 Mean annual runoff (MAR) for the four WMA sub-areas in the South African portion of the Olifants    |
| Basin and for Mozambique                                                                                      |
| Table 5.1 Studies included in this report. Shading denote studies that offer the most relevant and useful     |
| data in terms of RESILIM-O, S&EWR                                                                             |
| Table 5.2 Quaternary catchments whose EC changed according to 1999 and 2011 desktop, with ECs and             |
| comments from other studies for comparison                                                                    |
| Table 5.3 Summarised EWR requirements from the Comprehensive Reserve         40                               |
| Table 5.4 Reliance on the Upper and Middle Olifants riverine ecosystem, adjusted to numeric scores and        |
| medians from DWAF for illustrative purposes 44                                                                |
| Table 5.5 Summary of reliance    45                                                                           |
| Table 5.6 Summary EWRs for DWA-EWR1 of the Dwars Reserve assessment                                           |
| Table 5.7       Characteristics of the dams in the Upper Dwars River       47                                 |
| Table 5.8 The combined direct and indirect benefits of the Der Brochen Project to the national economy        |
| expressed in terms of water use                                                                               |
| Table 5.9 Summary of economic effects resulting from the proposed Richmond Dam in terms of direct             |
| and indirect economic effects and aquatic ecosystem services                                                  |
| Table 5.10 Mean annual requirements as a percentage of MAR and as MCM for Category C 50                       |
| Table 5.11 Types of importance that were scored in the social assessment                                      |
| Table 5.12 Detailed results for two of the resource units                                                     |
| Table 5.13 Summary of Importance of goods and services provided and sensitivity to changes in their           |
| quantity and quality for all RUs                                                                              |
| Table 5.14 Scenarios modelled in Salomon         54                                                           |
| Table 5.15 Measures and sources of information used in the EGSA study         56                              |
| Table 5.16       Summary of river values per catchment in R millions, including first order rivers         57 |
| Table 5.17 Options for reducing water requirements and for increasing water supply         58                 |
| Table 5.18 Recommended EWRs from Classification study                                                         |
| Table 5.19 Details of ecosystem services values in the Olifants sub-WMAs         61                           |
| Table 5.20 Proposed Management Classes for the Olifants WMA                                                   |



| Table 5.21 Distribution of changes in ecosystem services per IUA and Scenario, and in ecosystem services |
|----------------------------------------------------------------------------------------------------------|
| adjusted GDP in R million per year63                                                                     |
| Table 5.22EWRs for the driest month from the Olifants Basin65                                            |
| Table 5.23 EWRs for the driest month from assessments done in southern and eastern Africa       66       |
| Table 5.24 Sources of information for the population and calibration of the DRIFT-DSS           68       |
| Table 7.1 Information used / available for assessment of EWRs for each site.         75                  |
| Table 7.2 Ranking of EWR sites for use in RELIMI-O, S&EWR                                                |
| App Table 1 Summary from DWAF (2001c) site appendix (Appendix A) of advantages and disadvantages of      |
| IFR 13                                                                                                   |
| App Table 2 Summary from DWAF (2001c) of ecological categories for each discipline for IFR 13 85         |
| App Table 3 Full list of DRIFT flow indicators                                                           |
| App Table 4 BBM flow indicators for IFR 13, and the DRIFT equivalents/alternatives                       |
| App Table 5 Indicators extracted from DWAF                                                               |
| App Table 6 Motivations given in DWAF (2001c) for each flow component at IFR13, rearranged per           |
| discipline, together with the specific recommended flows                                                 |
| App Table 7 Summary of IFR estimate for IFR1 (Class C)                                                   |
| App Table 8 Summary of IFR estimate for IFR2 (Class B)                                                   |
| App Table 9 Summary of IFR estimate for IFR3 (Class C)                                                   |
| App Table 10 Summary of IFR estimate for IFR4 (Class B)                                                  |
| App Table 11 Summary of IFR estimate for IFR5 (Class B)                                                  |
| App Table 12 Summary of IFR estimate for IFR5 (Class C)                                                  |
| App Table 13 Summary of IFR estimate for IFR6 (Class D)                                                  |
| App Table 14 Summary of IFR estimate for IFR6B (Class B)                                                 |
| App Table15 Summary of IFR estimate for IFR6B (Class C)                                                  |
| App Table 16 Summary of IFR estimate for IFR6C (Class B)                                                 |
| App Table 17 Summary of IFR estimate for IFR6C (Class C)                                                 |
| App Table 18 Summary of IFR estimate for IFR7 (Class D)                                                  |
| App Table 19 Summary of IFR estimate for IFR8 (Class D)                                                  |
| App Table 20 Summary of IFR estimate for IFR9 (Class D)                                                  |
| App Table 21 Summary of IFR estimate for IFR10 (Class D)                                                 |
| App Table 22 Summary of IFR estimate for IFR11 (Class D)                                                 |
| App Table 23 Summary of IFR estimate for IFR12 (Class B)                                                 |
| App Table 24 Summary of IFR estimate for IFR13 (Class B)                                                 |
| App Table 25 Summary of IFR estimate for IFR13 (Class C)101                                              |
| App Table 26 Summary of IFR estimate for IFR14A (Class C)                                                |
| App Table 27 Summary of IFR estimate for IFR16/17 (Class B)102                                           |
| App Table 28 Summary of IFR estimate for IFR16/17 (Class C)                                              |
| App Table 29 High-flow (freshets and floods) EWRs from the Comprehensive Reserve                         |
| App Table 30 Category B/C (the REC) EWRs for DWA-EWR1                                                    |
| App Table 31 Category B/C (the REC) flood EWRs for DWA-EWR1)                                             |
| App Table 32 Category C (REC) EWRs for M-EWR1                                                            |
| App Table 33 Category C (REC) EWRs for M-EWR2107                                                         |



| App Table 34 Category C (REC) Flood requirement EWRs for M-EWR1 and 2                             | 107 |
|---------------------------------------------------------------------------------------------------|-----|
| App Table 35 IUA1 Upper Olifants: Summary of Eco-classification and EWR                           | 108 |
| App Table 36 UA 2 Wilge River Catchment: Summary of Eco-classification and EWR                    | 109 |
| App Table 37 IUA 3 Selons River Catchment: Summary of Eco-classification and EWR                  | 109 |
| App Table 38 IUA 4 Elands River Catchment: Summary of Eco-classification and EWR                  | 109 |
| App Table 39 IUA 5 Middle Olifants up to Flag Boshielo Dam:_Summary of Eco-classification and EWR | 110 |
| App Table 40 IUA 6 Steelpoort River Catchment: Summary of Eco-classification and EWR              | 110 |
| App Table 41 IUA 7 Middle Olifants below Flag Boshielo Dam:Summary of Eco-classification and EWR  | 111 |
| App Table 42 IUA 8 Spekboom catchment: Summary of Eco-classification and EWR                      | 111 |
| App Table 43 IUA 9 Ohrigstad catchment: Summary of Eco-classification and EWR                     | 111 |
| App Table 44 UA 10 Lower Olifants (includes lower Blyde): Summary of Eco-classification and EWR   | 112 |
| App Table 45 IUA 11 Ga-Selati River: Summary of Eco-classification and EWR                        | 112 |
| App Table 46 IUA 12 Lower Olifants within KNP: Summary of Eco-classification and EWR              | 112 |
| App Table 47 IUA 13 Blyde River catchment: Summary of Eco-classification and EWR                  | 113 |



## Acronyms

| AEC       | Alternate Ecological Category                      |
|-----------|----------------------------------------------------|
| BBM       | Building Block Method                              |
| CD:RDM    | Chief Directorate: Resource Directed Measures      |
| DRIFT     | Downstream Response to Imposed Flow Transformation |
| DSS       | Decision support system                            |
| EC        | Ecological Category                                |
| EF        | Environmental Flow                                 |
| EIS       | Environmental Importance and Sensitivity           |
| EWR       | Ecological Water Requirements                      |
| HFSR      | Habitat Flow-Stressor Response                     |
| MCM       | Million cubic metres                               |
| HPP       | Hydropower Project                                 |
| MAR       | Mean Annual Runoff                                 |
| MCM       | Million Cubic Metres                               |
| N/A       | Not applicable or Not available                    |
| NWA       | National Water Act (South African)                 |
| PD        | Present Day                                        |
| PES       | Present Ecological State                           |
| RDM       | Resource Directed Measures                         |
| REC       | Recommended Ecological Category                    |
| RESILIM   | Resilience in the Limpopo                          |
| RESILIM-O | Resilience in the Limpopo - Olifants               |
| RQO       | Resource Quality Objectives                        |
| S&EWR     | Social and Environmental Water Requirements.       |
| WATRES    | Water Resources Ecosystem Services                 |
| WRCS      | Water Resource Classification System               |



## 1 Introduction

### 1.1 The RESILIM-O project

The RESILIM-O project is part of a larger RESILIM project addressing resilience in the Limpopo region. RESILIM-O focusses on the Olifants Basin (see Section 4).

The objectives of RESILIM-O are to (USAID 2013):

- Reduce climate vulnerability by promoting science-based adaptation strategies;
- Enhance water security and integrated water resources management;
- Conserve biodiversity and improve management of high priority ecosystems;
- Develop stakeholder capacities to manage water and ecosystem resources;
- Ensure continuous, reflective and collaborative learning;
- Facilitate exchanges across the Basin and with other Basins

The main themes of the RESILIM-O project are listed in Table 1.1. Information on each of these the themes will be provided by a series of workpackages, each of which will contribute to one or more theme.

| Theme 1                                                                                                           | Theme 2                                                                                                     | Theme 3                                                           | Theme 4                                                |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|
| Integrated systems<br>and resilience analysis<br>and ensuring pathways<br>to impacts within the<br>Olifants Basin | Support for trans-<br>boundary integrated<br>water resources<br>management (IWRM)<br>for the Olifants Basin | Biodiversity<br>conservation in<br>critical areas of the<br>basin | Learning, capacity<br>development and<br>communication |

#### TABLE 1.1 RESILIM-O THEMES

This report forms part of the deliverables on the Social and Environmental Water Requirements (S&EWR) workpackage (Section 1.2).

#### 1.2 The RELIMI-O, S&EWR workpackage

The RESILIM-O, S&EWR workpackage will contribution to Theme 1: Integrated systems and resilience analysis by describing, modeling and quantifying the links between changes in flow in the river and changes in ecosystem condition and ecosystem services and benefits. However, its main contribution is to Theme 2: Trans-boundary IWRM.

Accordingly, it addresses Objective 2: enhancing water security and integrated water resources management.



#### 1.2.1 RELIMI-O, S&EWR activities

RESILIM-O, S&EWR aims to use existing determinations of Environmental Water Requirements (EWR) and aquatic ecosystem services, plus relevant information from the livelihoods, ecosystem-services and risks assessments to populate and calibrate a DRIFT (Downstream Response to Imposed Flow Transformations ) Decision Support System (DSS). The DSS will then be used to predict the likely impacts associated with flow scenarios on the riverine ecosystem, and on people who depend on it for services, livelihoods and other benefits.

The RESILIM-O, S&EWR workpackage comprises three main activities, viz:

- Activity 1: Synthesize and review current determinations for Environmental Water Requirements (EWRs) and water resources ecosystem services under different scenarios.
- Activity 2: Contribute to a systemic understanding of the Olifants Basin, practices related to water resource protection and to the resilience analysis for the Olifants Basin.
- Activity 3: Use DRIFT-DSS at the year 1 site(s) to assess scenarios. The scenarios may be related to water resources' Management Classes and other scenarios (such as climate change) as required by the project. Scenarios will be assessed in terms of ecosystem services and well-being as identified by stakeholders in collaboration with the Ecosystem Services and Social Benefits workpackages, and will compare results with those of the Classification study.

The DRIFT-DSS that is populated and used to assess scenarios in Activity 3 will provide the implications of those scenarios for the ecosystems and the people and social structures that are dependent on them. However, the source of the information used to calibrate the two portions of the DSS (biophysical and social) will be supplied through different avenues:

- The hydrological information (daily time-series for the baseline and scenarios) will be provided by the Hydrological team;
- Biophysical information will be supplied by the RESILIM-O, S&EWR team using existing information (see Section 1.2.2) as far as possible;
- The ecosystem services and social benefits information will be supplied by the respective teams, with interactions with the RESILIM-O, S&EWR team, to ensure that the various processes can supply information in the format required for DRIFT.

#### 1.2.2 RESILIM-O, S&EWR approach and data requirements

RESILIM-O, S&EWR: Activity 3 (Section 1.2.1) necessitates the population and calibration of a DRIFT-DSS for a single focus site in the Olifants Basin using, where possible, information generated by previous EWR and EWR-related studies.

Table 1.2 summarises the main steps in the population and calibration of the DRIFT-DSS and the type of information needed to inform each step. The extent to which the information available from previous EWR and EWR-related studies will be useful in populating and calibrating the DSS will be evaluated in the subsequent sections using the information in Table 1.2 as a guide.



### TABLE 1.2 STEPS IN THE POPULATION AND CALIBRATION OF THE DRIFT-DSS AND THE TYPE OF INFORMATION NEEDED TO INFORM EACH STEP

|   | STEP                                                | EXPLANATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INFORMATION/DATA NEEDED FROM<br>EXISTING STUDIES                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Site selection                                      | Select a focus site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evaluation of the type and quality of data needed for Steps 2 - 5 available for sites in the basin (see Section 7 ).                                                                                                                                                                                                                                                                                                                                                    |
| 2 | Indicator<br>selection                              | <ul> <li>In the DRIFT-DSS a network of indicators is used to describe the river ecosystem and its human users. Indicators:</li> <li>are items that can describe changes in the riverine ecosystem as a result of flow change.</li> <li>must be objects (e.g. sand bars; small-mouth yellowfish, groups of fish) that are directly or through other indicators affected by flow and can be described through changes in their abundance, concentrations (for e.g. water quality), extent/area (for e.g. riffles), or value.</li> <li>selection is informed by the physical and chemical nature of the river ecosystem, the biota present, and the use made of/value placed on these by people.</li> <li>Typically a DRIFT assessment will use between 50 and 200 indicators across the disciplines of geomorphology, water quality, riparian vegetation, invertebrates, fish, other biota of interest, and ecosystem services / social aspects.</li> </ul> | Distributional/community data for<br>vegetation, fish, invertebrates.<br>Life history data for vegetation, fish,<br>invertebrates.<br>Research and monitoring data linking<br>the physical and chemical nature of<br>the river ecosystem, and the biota<br>present, to the flow regime.<br>Human use of or dependency on river<br>resources.<br>Valued/rare river resources/species.<br>Criteria for resource use, such as E.<br>coli concentrations in drinking water. |
| 3 | Population of<br>response<br>curves                 | <ul> <li>Response curves form the heart of the DRIFT-DSS, and must be compiled for every indicator selected in Step 2. Each response curve depicts the relationship between a driving indicator and a responding indicator.</li> <li>In RESILIM-O, S&amp;EWR, biophysical response curves will be compiled based on any available relevant knowledge: existing data, national and international literature, global understanding and local knowledge.</li> <li>Ecosystem services response curves will be complied based on input from RESILIM-O teams responsible for that workpackage.</li> <li>Response curves may be extrapolated from and to similar sites.</li> </ul>                                                                                                                                                                                                                                                                               | Thresholds for resource use, such as<br>water quality criteria of drinking<br>water.<br>Motivations of seasonal depths and<br>velocities for maintaining habitat<br>biota.<br>Delineation of lateral zones in riparian<br>vegetation.<br>Lowflow 'stress tables' for indicators<br>used in HFSR <sup>1</sup> studies.<br>Delineation, showing similarly between<br>sites in terms of hydrology, water<br>quality, habitat and biota.                                    |
| 5 | Calibration of<br>outputs and<br>response<br>curves | In RESILIM-O, S&EWR, the primary calibration target<br>will be to ensure that the outputs (EWRs and<br>Ecological Categories) of the DRIFT-DSS match those<br>of existing Reserve studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EWR volumes linked to ecosystems<br>condition (i.e. Ecological Categories)<br>as a percentage of natural annual<br>and/or monthly volume<br>Estimates of extent of change in<br>indicators linked to percentage of<br>natural annual and/or monthly volume                                                                                                                                                                                                              |
|   |                                                     | Cross check inconsistences in DRIFT-DSS output versus existing studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hydrological time-series data used in existing study(ies)                                                                                                                                                                                                                                                                                                                                                                                                               |

<sup>&</sup>lt;sup>1</sup> See Section 2.6.2 for descriptions of the different methods



### 1.3 Purpose of this report

This is the RESILIM-O, S&EWR Activity 1 Report. Its purpose is to collate relevant information from Reserve determinations (e.g., DWAF 2001a, b and c), ecosystem services and valuation (e.g., DWAF 2001d, DWA 2010a) and Classification (e.g. DWA 2012) studies undertaken in the Olifants Basin since 2000, and to identify studies and data that will be used to inform later activities in RESILIM-O, S&EWR. Particular consideration is given to biophysical data that will be useful in populating and calibrating the response curves to ensure that the resultant DRIFT predictions of annual volume linked to ecosystem condition are in alignment with those used in the Reserves and Classification process.

#### The summary of relevant information includes:

- Study rivers
- Location of EWR sites and key habitats
- Assessment methods used
- The length of record and time-step of the hydrological data used
- Present Ecological States (PES)
- Biophysical indicators used, and their relationship to flow
- Ecosystem services identified / social indicators used
- Recommended and alternative ecological condition (REC and AEC respectively)
- EWRs for maintaining different REC and AEC
- Any additional detail pertaining to values for indicators
- Valuation methods applied, and values derived for ecosystem services.

#### The remaining sections of this report are as follows:

- Section 2, which explains key concepts and terms and provides a description of DWA levels of Reserve assessment and EWR methods used in South Africa.
- Section 3, which describes DRIFT.
- Section 4, which gives an overview of the study area in the context of EWRs.
- Section 5, which lists the applicable studies undertaken in the basin, identifies information of
  relevance to this study that was generated by them, and summarises the results (with details in
  Appendix A to Appendix C). It also describes how information from these studies can be used to
  assist with the population and calibration of the DRIFT-DSS (Table 1.2).
- Section 6, which outlines the proposed procedure for capturing this information in DRIFT, and maximising compatibility between the outcomes for previous studies and the DRIFT assessments.
- Section 7, provides a short-list of possible EWR sites for Activity 3 based on the type and quality of the information available at each.



### 1.4 General comments

The process of summarising the results of previous studies highlighted several challenges. Chief among these are:

- Access to full and final documentation. Most of the reports for DWA-funded studies are not available on the DWA website and signed off copies of the Reserves cannot be accessed. This means that even if the relevant reports are obtained, there is uncertainty whether they are the final versions.
- The reports contain errors, such as summary tables that provide highflow maintenance flows that are labelled lowflow, which means that each table must be double checked and/or advice sought on what constitutes the correct information. This is made more difficult by the fact that reports within a study do not contain the same information for different areas. For instance, the Comprehensive Reserve Determination reports for the Middle and Lower Olifants provide the Desktop Model outputs for each site, but the report for Upper Olifants does not. This means that EWR tables within the Upper Olifants report cannot be checked for errors against the Desktop Model output.
- Results/recommendations for the same site vary between documents, without clear explanations for the reasons for the differences.
- The "Status of Aquatic Ecosystems Olifants" report (DWAF and DFID 2007), which looks at all EWRs and the Preliminary Reserves, mentions discrepancies between recommended and signed-off Reserves only some of these appeared to be actual discrepancies.
- The use of the term 'Present Ecological Status' (PES) in the various Reserve and Classification related documentation can create confusion, as the 'PES' reported in, for example, 2001 is no longer the 'PES' in 2014, and differs from the PES assessed in 2009. Indeed often the 'PES' is out of date before the report is released.
- It is difficult to access the raw data (such as hydrological time-series or stress-tables where HFSR was used). DWA do not house these data, and the only option is to approach the consultant responsible for the collecting/collating the data. Even then, the data are often no longer available and in some cases the consultant is question has passed away.
- The motivations for particular components of the flow regime are often not helpful. For instance, in DWAF (2001c), IFR Site 13, the motivation of "Mobilise sediments and prevent excessive sediment deposition" is provided for discharges of 6, 8, 18, 30 and 50 m3/s.

The challenges are not confined to Reserve and related reports. Summary statistics from other fields, such as water-resources and hydrology also vary widely. For instance, values for the 'water deficit' in the Olifants Basin are provided in several sources, but seldom agree, due to differences in data, assumptions, dates of the studies (and consequent changes in supply and demand). These differences make it difficult to interpret the information. Similarly, several lists of functioning and defunct gauges exist, but these do not agree with one another. In this regard, the list from <a href="http://www.dwaf.gov.za/iwqs/wms/data/000key.asp">http://www.dwaf.gov.za/iwqs/wms/data/000key.asp</a> was used for this report.



## 2 Key processes, methods and concepts

### 2.1 Environmental Water Requirements

Environmental Water Requirements (EWRs)<sup>2</sup> describe the quantity, timing and quality of water flows required to sustain freshwater and estuarine ecosystems <u>at a given level of health</u> (*sensu* Hirji and Davis 2009).

In South Africa, once a future level of health has been chosen for a river or river reach, the associated EWR becomes the Ecological Reserve (see Section 2.2.4) for that river or river reach (DWAF 1998).

### 2.2 Water resource protection in South Africa

Activities to protect and manage water resources, as envisaged in the National Water Act of South Africa (NWA; DWAF 1998), are divided into:

- Resource-Directed Measures (RDM), which focus on the protection and management of the water resources of the country. These include processes such as Classification and Reserve determination, and;
- Source-Directed Controls", which focus on the management and control of water users and include processes such as issuing of water-use and waste-water licenses.

RDM activities are the responsibility of the Department of Waters Affairs' Chief Directorate: Resource Directed Measures (CD:RDM).

#### 2.2.1 Classification

In accordance with the NWA (DWAF 1998), a Water Resource Classification System (WRCS) was developed in 2007 (DWAF 2007), and the summary steps published in Government Gazette (Government Gazette, 17 September 2010 No. R. 810 and No. 33S41).

The WRCS is a set of technical guidelines and procedures for determining the different classes of water resources, and their associated ecological condition. The WRCS was designed for use in a consultative process (Classification Process) to classify water resources across the country. The outcome of the Classification Process will be a Management Class, Resource Quality Objectives (RQOs; Section 2.2.3) and the Reserve (Section 2.2.4) for every significant water resource (river, estuary, wetland and aquifer). Together, these will determine the level of protection afforded freshwater ecosystems, and the amount of water available for off-stream use.

<sup>&</sup>lt;sup>2</sup> Synonymous terms include Instream Flow Requirements (IFRs), Environmental Flows (EFs), and EFlows.



The WRCS comprises the following seven steps:

- Step 1: Delineate the units of analysis and describe the status quo of the water resources or water resources;
- Step 2: Link the socio-economic and ecological value and condition of the water resource or water resources
- Step 3: Quantify the ecological water requirements and changes in non-water quality<sup>3</sup> ecosystem goods, services and attributes;
- **Step 4:** Determine an ecologically sustainable base configuration scenario;
- **Step 5**: Evaluate scenarios within the integrated water resource management process;
- **Step 6**: Evaluate the scenarios with stakeholders; and
- **Step 7**: Gazette and implement the class configuration.

#### 2.2.2 Management Class

Management Classes are set different parts (sub-basins) or a river basin depending on the level of use that will be made of the water resources in each sub-basin in the future (Table 2.1). The Management Class is defined by a set of quantity and quality attributes that DWA and society agree on for the water resources in sub-basin.

| TABLE 2.1            | REQUIREMENTS FOR ECOLOGICAL CONDITION FOR THE THREE MANAGEMENT CLASSES (DOLLAR |  |
|----------------------|--------------------------------------------------------------------------------|--|
| <i>ET AL</i> . 2006) |                                                                                |  |

| MANAGEMENT<br>CLASS         | DESCRIPTION                                                                                                                                                                     | CONFIGURATION<br>GUIDELINES                                                        |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Class 1: Minimally<br>used  | The configuration of water resources<br>within an IUA results in an overall water<br>resource condition that is minimally<br>altered from its pre-development<br>condition.     | At least 60% of the freshwate<br>ecosystems in a sub-basin are<br>A or B category. |
| Class 2:<br>Moderately used | The configuration of water resources<br>within an IUA results in an overall water<br>resource condition that is moderately<br>altered from its pre-development<br>condition.    | At least 40% of the freshwate<br>ecosystems in a sub-basin are<br>A or B category. |
| Class 3: Heavily<br>used    | The configuration of water resources<br>within an IUA results in an overall water<br>resource condition that is significantly<br>altered from its pre-development<br>condition. | No requirement for A or B cat                                                      |

<sup>&</sup>lt;sup>3</sup> The wording of this section is misleading: water quality is dealt with in Step 3 (e.g. Step 3c may consider water-quality characteristics for which a change in 'fitness for use' for a particular activity might arise under different scenarios).



#### 2.2.3 Resource Quality Objectives

The NWA (DWA 1998) defines 'resource quality' as the 'quality' of all aspects of a water resource including:

- The quantity, pattern, timing, water level and assurance of instream flow;
- The water quality including the physical, chemical, and biological characteristics of the water;
- The character and condition of the instream and riparian habitat; and
- The characteristics, condition and distribution of the aquatic biota.

It also states that the purpose of RQOs is to 'establish clear goals relating to the quality of the relevant water resources' and stipulates that in determining RQOs a balance must be sought between the need to protect and sustain water resources and the need to use them. The Act also binds authorities and institutions to uphold the RQOs that have been set.

RQOs are intended to provide targets that can be measured/audited. These encompass the objectives for both resource protection and users requirements, for instance, the water quality for a processing plant. RQOs for the freshwater ecosystems typically comprise a descriptor, which forms the RQO, and a description of the threshold beyond which change would constitute a deviation from the agreed objective for that descriptor, the so called Threshold of Potential Concern (TPCs).

The Reserve requirements, which form part of the RQOs, are usually in the form of exceedance curves, although monthly lowflow requirements are also often provided for monitoring.

#### 2.2.4 The Reserve

The Reserve is defined as the "quantity and quality of water required to satisfy basic human needs ... and to protect aquatic ecosystems in order to secure ecologically sustainable development and use of the relevant water resource" (DWAF 1998). These are referred to as the Basic Human Needs (BHN) Reserve and the Ecological Reserve, respectively. The NWA (DWAF 1998) further specifies that:

- A Reserve must "be in accordance with the class of the water resource as determined ...." during Classification (Section 2.2.1 and "...ensure that adequate allowance is made for each component of the Reserve", and
- "Until .... a class of a water resource has been determined, the Minister .... must, before authorising the use of water under section 22(5), make a preliminary determination of the Reserve."

Preliminary Reserves will be superseded by any Reserve agreed on as a result of Classification.



#### 2.3 Water resource protection in Mozambique<sup>4</sup>

In Mozambique, water resources protection is dealt with in the National Water Policy (PNA, 1995, amended in 2007 and becoming the PA), the 1990 Constitution and Water Law (16/91) and through the SADC Protocol on Shared Watercourses. There is an advisory National Water Council and five regional water administrations (ARA-Sul, ARA-Centro, ARA-Norte, ARA-Zambezi, and ARA-Centro Norte). ARA-Sul (Regional Administration of Waters in the South), falls under the Ministério das Obras Públicas e Habitação and Direção Nacional de Águas (DNA) and is responsible for the Olifants-Limpopo river. Priority of use is given to human water supply, sanitation and common uses, followed by water for environmental sustainability. Conflicts may be resolved through socio-economic cost-benefit analyses performed by the ARAs (Barros 2009, quoted on Limpopo River Awareness Kit website).

### 2.4 Present Ecological Status

Present Ecological Status (PES) describes the ecological condition, at the time of the assessment, of the aquatic ecosystem (river, wetland or estuary) in terms of its ability to support and maintain a balanced, integrated composition of physico-chemical, habitat and biotic characteristics on a temporal and spatial scale relative to the natural characteristics of ecosystems of the region. The PES assessments are used to place the ecosystem in an Ecological Category as indicated in Table 2.2.

| ECOLOGICAL<br>CATEGORY | PES % SCORE | DESCRIPTION OF THE HABITAT                                                                                                                                                                                                                                                           |
|------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А                      | 90-100%     | Still in a Reference Condition.                                                                                                                                                                                                                                                      |
| В                      | 80-90%      | Slightly modified from the Reference Condition. A small change in natural habitats and biota has taken place but the ecosystem functions are essentially unchanged.                                                                                                                  |
| С                      | 60-80%      | Moderately modified from the Reference Condition. Loss<br>and change of natural habitat and biota has occurred, but<br>the basic ecosystem functions are still predominantly<br>unchanged.                                                                                           |
| D                      | 40-60%      | Largely modified from the Reference Condition. A large loss of natural habitat, biota and basic ecosystem functions has occurred.                                                                                                                                                    |
| E                      | 20-40%      | Seriously modified from the Reference Condition. The loss of natural habitat, biota and basic ecosystem functions is extensive.                                                                                                                                                      |
| F                      | 0-20%       | Critically / Extremely modified from the Reference<br>Condition. The system has been critically modified with an<br>almost complete loss of natural habitat and biota. In the<br>worst instances, basic ecosystem functions have been<br>destroyed and the changes are irreversible. |

### TABLE 2.2 DEFINITIONS OF THE PRESENT ECOLOGICAL STATUS (PES) AND ECOLOGICAL CATEGORIES (AFTER KLEYNHANS 1996).

<sup>&</sup>lt;sup>4</sup> Corrections and additions to this section will be made once information is available from the relevant workpackes on the RESILIM-O project.



#### 2.5 Indicators

Indicators are the basic building blocks of monitoring and evaluation systems (Global Water Partnership 2010). In IWRM work, indicators are part of a hierarchy of terms used, to assess progress toward some goal (GWP 2010). From the highest to lowest level these terms are:

| Goals:             | Broad qualitative statements about what is to be achieved or what problem is to be solved.             |
|--------------------|--------------------------------------------------------------------------------------------------------|
| <b>Objectives:</b> | The means identified to achieve the goals.                                                             |
| Actions:           | The specific activities identified to accomplish the objectives.                                       |
| Targets:           | Defined and measurable levels at which it can be deduced that goals and objectives have been achieved. |
| Indicators:        | Measures selected to assess progress.                                                                  |

Thus, in the context of the Reserve, indicators are used to represent ecosystem attributes that are likely to respond to changes in flow and for which predictions of change are made, linked to each EWR. Once Classification has been undertaken, the indicators are translated into RQOs.

### 2.6 EWR methods used in South Africa

The development of methods for EWR assessments in South Africa is comprehensively reviewed in King and Pienaar (2011).

#### 2.6.1 Assessment levels

Methods vary in terms of their level of detail (Box2.1)

| Box 2.1<br>DWA levels of Reserve determination |                                                                                                                                                                                                                                                                        |  |  |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Desktop:<br>Rapid-1:                           | No fieldwork. Monthly hydrological data.<br>Limited field work (c. 1 hour per site) to do a PES assessment. Uses monthly<br>hydrological data. No specialist input. Uses the Desktop Model (see 2.6.2) based                                                           |  |  |
| Rapid-2:                                       | on PES.<br>Limited field work (c. 2 hours per site) to do a PES assessment, a discharge<br>measurement and basic biological sampling. Specialist input for fish and<br>invertebrates. No hydraulics. Desktop Model verified and adjusted using biotic                  |  |  |
| Rapid-3:                                       | information.<br>Limited field work (c. 6 hours per site) to do a PES assessment, basic hydraulics<br>and biological sampling. Specialist input for hydraulics, fish and invertebrates.<br>Desktop Model verified and adjusted using hydraulics and biotic information. |  |  |
| Intermediate:                                  | One full field visit to collect biophysical data. Full hydraulics and biological sampling. Uses daily hydrological data. Considers socio-economic impacts.                                                                                                             |  |  |
| Comprehensive:                                 | Sampling over one year. Two full field visits to collect biophysical data. Full hydraulics and biological sampling. Uses daily hydrological data. Considers socio-economic impacts.                                                                                    |  |  |



#### 2.6.2 EWR assessment methods for rivers

In South Africa, EWR assessment methods must be ratified by the Department of Water Affairs (DWA) before they can be used for EWR determinations. The methods currently ratified for use for rivers are:

- The Desktop Model (Hughes and Hannart 2003);
- The Building Block Methodology (BBM; King et al. 2000);
- The Habitat Flow Stressor Response (HFSR) method (Hughes and Louw 2010); and
- DRIFT(1) (Brown *et al.* 2008) and DRIFT(2) (Brown *et al.* 2013)<sup>5</sup>.

The level of assessment affects the EWR methods used. In general, the Desktop Model is used in Desktop and Rapid Reserve determinations, and BBM, HFSR and DRIFT are used in Intermediate and Comprehensive assessments. The BBM is an old method and has been replaced by HFSR and DRIFT. DRIFT has not been applied in the Olifants Basin, but is included here, as it is intended for use in RESILIM-O, S&EWR.

A comparative summary of the methods is given in Table 2.3.

HFSR and DRIFT differ in the way ecological information is used to evaluate the implications of different flows for the riverine ecosystem: DRIFT developing response curves, and HFSR developing stress duration curves. It is unclear whether the results of the two methods are comparable in terms of their predicted impacts associated with flow change because there are no studies where they have been applied simultaneously. However, broad level evaluations suggest that they produce comparable outputs (Brown 2013).

| Considerations | Desktop and Rapid<br>level                                                                                          | Intermediate and Comprehensive level                                                                         |                                                                                                          |                                                               |                                                                                  |
|----------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------|
|                | Desktop                                                                                                             | BBM                                                                                                          | HFSR                                                                                                     | DRIFT(1)                                                      | DRIFT(2)                                                                         |
| Software       | Desktop Model<br>within SPATSIM                                                                                     | None                                                                                                         | Habitat Flow<br>Stressor Response<br>model within<br>SPATSIM <sup>6</sup>                                | VBA and Excel<br>databases                                    | Delphi coded<br>software with<br>links to<br>GoogleMaps                          |
| Hydrology      | Monthly data in<br>WR90 format                                                                                      | Daily data                                                                                                   | Daily data                                                                                               | Daily data                                                    | As for DRIFT(1)                                                                  |
| Lowflows       | Pro-rata<br>distribution of MAR<br>in accordance with<br>results of detailed<br>EWR assessments<br>at similar sites | Motivations for<br>flows to meet<br>requirements of<br>biophysical<br>indicators                             | Stress indices set<br>for fish and<br>macroinvertebrates                                                 | Response curves                                               | As for DRIFT(1),<br>but links to<br>changes in flow or<br>any other<br>indicator |
| Highflows      | Monthly volumes<br>for maintenance<br>and drought                                                                   | Motivations for<br>number and<br>timing of floods to<br>meet<br>requirements of<br>biophysical<br>indicators | Predictions of<br>change in indicators<br>linked to<br>occurrence of<br>floods of different<br>magnitude | linking biophysical<br>indicators to flow<br>indicator change |                                                                                  |

| TABLE 2 3 | COMPARATIVE S | SUMMARY FWR |               | USED FOR THE RIVERS. |
|-----------|---------------|-------------|---------------|----------------------|
|           |               |             | METHODOLOGILJ |                      |

<sup>&</sup>lt;sup>5</sup> DRIFT(1) has evolved substantially to the DRIFT(2) version proposed for use in RESILIM-O, EWRS, which has been applied

elsewhere in Africa, South America and Asia, but not as yet in South Africa.

<sup>&</sup>lt;sup>6</sup> Spatial and Time Series Modelling (Hughes and Forsythe 2006).



| Considerations                  | Desktop and Rapid<br>level                | Intermediate and Comprehensive level |                                                                |                                                                                        |                                                                               |
|---------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                 | Desktop                                   | BBM                                  | HFSR                                                           | DRIFT(1)                                                                               | DRIFT(2)                                                                      |
|                                 |                                           | Recommended<br>flow of an EC         | Ecological<br>categories                                       | Ecological<br>categories,<br>predicted changes<br>in abundance of<br>indicators        | As for DRIFT(1) +<br>time-series of<br>changes +<br>summaries of<br>Integrity |
|                                 |                                           |                                      | Annual volume of<br>EWRs                                       | Annual volume of<br>EWRs                                                               |                                                                               |
| -                               | -                                         |                                      | Monthly lowflows<br>for maintenance<br>and drought             | Monthly lowflows<br>for maintenance<br>and drought                                     | The same as                                                                   |
|                                 | Monthly volume for<br>intra-annual floods |                                      | Timing, duration,<br>peak and volume of<br>intra-annual floods | Timing, duration,<br>peak and volume<br>for intra-annual<br>and inter-annual<br>floods | DRIFT(1)                                                                      |
| Can evaluate<br>flow scenarios? | Limited                                   | No (prescriptive)                    | Yes                                                            | Yes                                                                                    | Yes                                                                           |

In both HFSR and DRIFT, relationships are developed between different aspects of the riverine ecosystem and flow. HFSR links ecological stress with flow duration curves, while DRIFT links abundance, area, concentration or other measure with flow indicators (such as wet season peak flow, or dry season duration) as well as to any other indicator. Both can thus be used to assess the impact of alternative flow scenarios on ecological condition at each site (Brown 2013).

The Desktop Model cannot be used for assessing scenarios directly, but once calibrated, can provide summary flow regimes to meet a range of ecological conditions. These can, in turn, be checked against scenario flow regimes to see which comes closest. The Desktop Model also has the "IFR Edit" module that allows it to be calibrated using data from comprehensive or intermediate environmental flow assessments at similar sites in the basin. This makes the Desktop Model invaluable for extrapolating environmental flow data from one part of the river system to another (Brown 2013).

There are several key differences between the methods that have been applied in the basin (BBM and HFSR) and DRIFT. A crucial issue is the extent to which the information generated by these studies can be used to inform a DRIFT assessment for the purposes envisaged in RESILIM-O, S&EWR.



## 3 DRIFT

DRIFT (King *et al.* 2003) is a holistic, interactive EWR assessment method, which provides the biophysical consequences for rivers of changing their flow regimes. It is a published method (King *et al.* 2003), with a detailed User Manual (Brown *et al.*, 2008 and 2013), and as such is has been extensively peer reviewed.

DRIFT has been widely applied: Angola and Botswana (King and Brown 2007), Lesotho (King *et al.* 2003), Mozambique (Beilfuss and Brown 2010; Southern Waters 2011a), Namibia (Southern Waters 2010), Peru (Norconsult and Southern Waters 2011), South Africa (e.g. Brown *et al.*, 2006), Pakistan/Kashmir (Southern Waters 2013; Southern Waters 2014), Sudan (Southern Waters 2009), Tanzania (PBWO/IUCN 2008) and Zimbabwe (Brown 2007).

DRIFT is based on response curves (Section 3.1.3) constructed from all relevant knowledge, including expert opinion and local wisdom, and as such is suitable for use in regions where there are few biophysical data available on the flow-related aspects of the rivers. It aims to provide an objective and transparent assessment of the effects of changes in flow on the downstream environment and the people who depend on it.

DRIFT is a data-management tool, allowing data and knowledge to be used to their best advantage in a structured way. Within DRIFT, each specialist uses discipline-specific methods to derive the links between river flow and river condition. The central rationale of DRIFT is that different aspects of the flow regime of a river elicit different responses from the riverine ecosystem. Thus, removal of part or all of a particular element of the flow regime will affect the riverine ecosystem differently than will removal of some other element.

In DRIFT, the long-term daily-flow time-series is partitioned into parts of the flow regime that are thought to play different roles in sculpting and maintaining the river ecosystem, such as the onset of flow seasons, which may affect breeding cycles, or the magnitude of the annual flood, which may inundate a floodplain. This makes it easier for ecologists to predict how changes in the flow regime could affect the ecosystem. The 'parts' of the flow regime used in DRIFT are called flow indicators.

#### These generally include:

- Seasonal/daily variations
- Mean annual runoff
- Dry season onset
- Dry season minimum 5-day discharge
- Dry season duration
- Dry season average daily volume
- Wet season onset

- Wet season minimum 5-day discharge
- Wet season duration
- Wet season flood volume
- Transition 1 average daily volume
- Transition 2 average daily volume
- Transition 2 recession shape

The variability of the flow regime in timing and magnitude, both in its natural state and in any future scenario, is captured automatically through instructions within the hydrological module of the DSS that identify the flow indicators year-by-year and translate the daily (or sub-daily) flow regimes to a time-series of flow indicators.



The result is an annual time-series of seasonal flow indicators. This means the response of the river ecosystem is assessed for a particular time-step (season) rather than an averaged response over several years. This provides far greater scope for using monitoring and other data from a particular year or season to calibrate the time-series responses.

#### 3.1 Summary of the DRIFT Process

The basic sequence of activities in the DRIFT DSS can be summarised as follows:

- 1. Collect/collate data for the study at a site(s) along the river.
- 2. Augment with expert knowledge for similar river systems and a global understanding of river functioning.
- 3. Obtain a daily time-series to reflect current or baseline conditions, which are translated to flow indicators.
- 4. Construct relationships (response curves; Section 3.1.3) for the expected response of individual ecosystem/social indicators (Section 3.1.1) to changes in linked indicators (Section 3.1.2)). Response curves are constructed using severity ratings which are directly translated as percentage changes in abundance, concentration, value or other relevant measure.
- 5. The response curves allow the response to the time-series of flow indicators to be sequentially calculated to produce a time-series of abundance (or other relevant measure) for each indicator.
- 6. Adjust the severity ratings to integrity ratings by assigning a negative sign for a move away from the natural ecosystem condition and a positive for a move towards natural.
- 7. Model future changes in basin hydrology, and calculate the annual flow indicator time-series (i.e. repeat step 3 for each scenario).
- 8. Using the flow indicators and response curves a time-series of change in abundance (or other measure) is calculated for each indicator.
- 9. Convert the resulting time-series to Integrity Scores to predict overall ecological condition.

In RESLIM-O, however, rather than starting from scratch, Steps 1 and 2 will use the information generated by the previous EWR studies in the Olifants Basin.

#### 3.1.1 Indicators

The indicators are biophysical and or social aspects of the riverine ecosystem that are expected to change with a change in flow. They comprise both flow indicators and other indicators. Indicators are objects (e.g. sand bars; fish) rather than processes (e.g. nutrient cycling), and are described through changes in their abundance, concentrations (for e.g. water quality), extent/area (for e.g. riffles), or value (e.g. income from fishing). Some examples of indicators are provided in Table 3.1. In total 50-70 or more indicators could be used.



TABLE 3.1EXAMPLES OF INDICATORS USED IN THE OKAVANGO STUDY TO PREDICT THE BIOPHYSICAL AND<br/>SOCIAL IMPACTS OF DEVELOPMENT-DRIVEN FLOW CHANGES (KING AND BROWN 2009)

| DISCIPLINE         | EXAMPLE INDICATOR                                             |
|--------------------|---------------------------------------------------------------|
| Geomorphology      | Sand bars                                                     |
| Water quality      | Conductivity                                                  |
| Vegetation - river | Upper Wet Bank (trees and shrubs)                             |
| Vegetation - delta | Lower Floodplain                                              |
| Macroinvertebrates | Channel - submerged vegetation habitat                        |
| Fish               | Large fish that migrate onto floodplains                      |
| Birds              | Specialists using floodplain pools and water lilies (jacanas) |
| Wildlife           | Outer floodplain grazers                                      |
| Social - economic  | Household income from reeds                                   |
| Social - lifestyle | Wellbeing from intangible river attributes                    |

#### 3.1.2 Linked indicators

The traditional approach to EWR assessments is based on using links between individual indicators and individual flow categories. DRIFT, however, uses an ecosystem approach, with links between individual indicators and a range of influencing flow categories and other so-called linked indicators. These links and relationships provide a more transparent, and easily monitored breakdown of the expected response of the river ecosystem.

For instance, instead of having to integrate the effects of habitat change, temperature and cover into a single response to change in dry season low flows (Figure 3.1), the linked-indicator approach allows a specialist to consider habitat change, temperature and cover individually.

#### 3.1.3 Response curves<sup>7</sup>

Response curves (Figure 3.2) depict the relationship between a biophysical or socio-economic indicator and a linked indicator (e.g., flow, food supply). In RESILIM-O, S&EWR, response curves will be constructed between an indicator and all the linked indicators deemed to be driving change. The aim is not to include every conceivable, but rather to restrict the linkages to those that are most meaningful and can be used to predict the bulk of the likely responses to a change in the flow or sediment regimes of the river. In modelling or mathematical terms, the linked indicators should be 'necessary and sufficient'.

 $<sup>^{7}</sup>$  The bulk of this section is taken from Joubert et al., 2009.



Response curves are constructed using severity ratings (Section 3.1.4).

Response curves are used to evaluate scenarios by taking the value of the linked (driver) indicator for any one scenario and reading off the resultant value for the response indicators from their respective response curves. Once this had been done the database combines these values to predict the overall change in each indicator (and in the overall ecosystem) under each scenario.

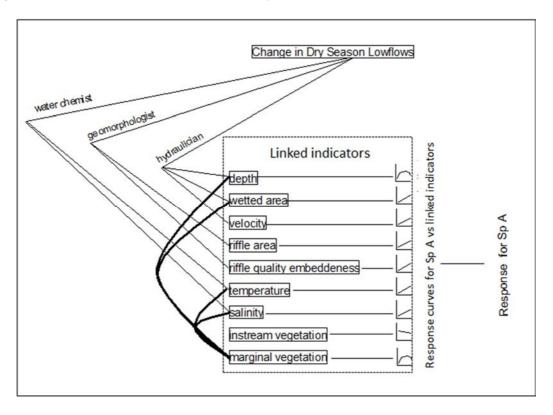



Figure 3.1 Schematic giving hypothetical example of linked indicators for Fish Sp A. Responses curves are required for each linked indicators. These are combined to derive the response for Fish Sp A for a change in dry-season low-flows.

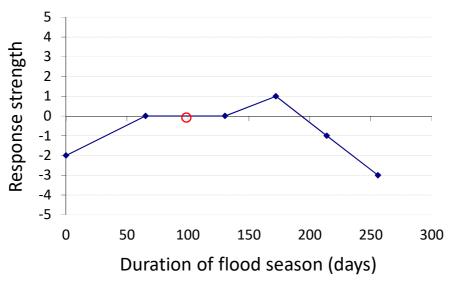



Figure 3.2 Example of a response curve - in this case of the relationship between duration of the flood season and the abundance of fish that are resident in the river. The circle indicates median baseline (current) duration of the flood season and the line describes how fish abundance would increase or decrease in years with longer or shorter flood seasons relative to the baseline. Fish abundances - response strength - is relative to baseline, with baseline abundance shown as zero change from baseline, or 100% of baseline (King et al. 2014).



#### 3.1.4 Scoring system used

Into the foreseeable future, predictions of river change will be based on limited knowledge. Most river scientists, are reasonably comfortable predicting the nature and direction of ecosystem change, but find it more difficult to predict its timing and intensity. To calculate the implications of loss of resources to subsistence and other users in order to facilitate discussion and trade-offs, it is nevertheless necessary to quantify these predictions as accurately as possible.

Three types of information are elicited for each biophysical indicator, viz.:

- Severity ratings, which describe increase/decreases for an indicator in response to changes in the flow indicators,
- Abundance (or other relevant measure such as concentration, area, value) of each indicator in response to change in flow, and;
- Integrity ratings, which indicate whether the predicted change is a move towards or away from natural, i.e., how the change influences overall ecosystem condition.

The severity ratings are used to construct the response curves. The Integrity ratings are used to describe overall ecosystem condition/health.

#### 3.1.4.1 Severity ratings

The severity ratings comprise 11-point scale of -5 (large reduction) to +5 (very large change; Brown et al., 2008; Table 3.2), where the + or - denotes an increase or decrease in abundance or extent. These ratings are converted to percentages using the relationships provided in Table 3.2. The scale accommodates uncertainty, as each rating encompasses a range of percentages; however, greater uncertainty can also be expressed through providing a range of severity ratings for any one predicted change (after King et al., 2003). For example, a severity score of -1 indicates that a range from 80-100% of baseline abundance is retained, but a range of severity scores from -1 to -2 could be used, indicating that 60-100% of baseline abundance is retained.

| SEVERITY RATING | SEVERITY          | % ABUNDANCE CHANGE                           |
|-----------------|-------------------|----------------------------------------------|
| 5               | Critically severe | 501% gain to $\infty$ up to pest proportions |
| 4               | Severe            | 251-500% gain                                |
| 3               | Moderate          | 68-250% gain                                 |
| 2               | Low               | 26-67% gain                                  |
| 1               | Negligible        | 1-25% gain                                   |
| 0               | None              | no change                                    |
| -1              | Negligible        | 80-100% retained                             |
| -2              | Low               | 60-79% retained                              |
| -3              | Moderate          | 40-59% retained                              |
| -4              | Severe            | 20-39% retained                              |
| -5              | Critically severe | 0-19% retained includes local extinction     |

TABLE 3.2 DRIFT SEVERITY RATINGS AND THEIR ASSOCIATED ABUNDANCES AND LOSSES -A NEGATIVE SCORE MEANS A LOSS IN ABUNDANCE RELATIVE TO BASELINE, A POSITIVE MEANS A GAIN.



Note that the percentages applied to severity ratings associated with gains in abundance are strongly non-linear and that negative and positive percentage changes are not symmetrical (Figure 3.3; King et al. 2003).

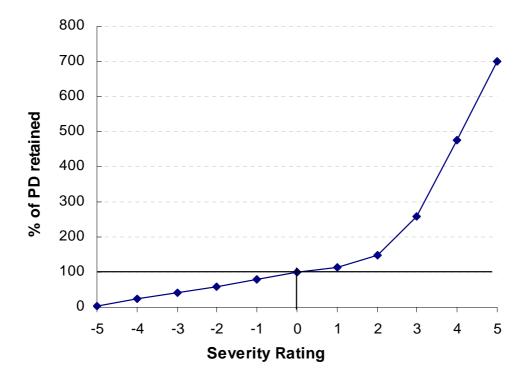



Figure 3.3 The relationship between severity ratings (and severity scores) and percentage of baseline as used in DRIFT and adopted for the DSS. (PD=present day or baseline, and = 100%).

For each year of hydrological record, and for each indicator, the severity rating corresponding to the value of a flow indicator is read off its Response Curve. The severity ratings for each flow indicator are then combined to produce a severity score, which provides an indication of how abundance, area or concentration of an indicator is expected to change under the given flow conditions in each year, relative to the changes that would have been expected under baseline conditions in the basin.

#### 3.1.4.2 Integrity ratings

Integrity ratings use the absolute value of between 0 and 5 provided for the severity scores but include a negative or positive sign, depending on whether the change in abundance predicted by the severity score represents a shift to/away from naturalness, *viz*. (Brown and Joubert 2003):

- Toward natural ecosystem condition is represented by a positive integrity rating; and
- Away *from natural* ecosystem condition is represented by a negative integrity rating.

The integrity ratings are calculated using the average abundance (concentration, area, value) for each ecosystem indicator over the entire response time-series. The integrity ratings for each indicator are then combined to provide an Overall Integrity Score, which is used to place the river ecosystem results for a particular flow scenario within a classification of overall river condition, using the South African eco-classification categories A to F (Table 3.3; Kleynhans 1996; Kleynhans 1999; Brown and Joubert 2003).



The ecological condition of a river is defined as its ability to support and maintain a balanced, integrated composition of physico-chemical and habitat characteristics, as well as biotic components on a temporal and spatial scale that are comparable to the natural characteristics of ecosystems of the region. For instance, if the present ecological status (PES) of a river is a B-category, a scenario that yields a negative Integrity Score would represent movement in the direction of a category C-F, whilst one with a positive score would indicate movement toward a category A, as follows:

### TABLE 3.3 DEFINITIONS OF THE PRESENT ECOLOGICAL STATE (PES) CATEGORIES (AFTER KLEYNHANS 1996).

| ECOLOGICAL<br>CATEGORY | DESCRIPTION OF THE HABITAT                                                                                                                                                                                                                           |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А                      | Unmodified. Still in a natural condition.                                                                                                                                                                                                            |
| В                      | Slightly modified. A small change in natural habitats and biota has taken place but the ecosystem functions are essentially unchanged.                                                                                                               |
| С                      | Moderately modified. Loss and change of natural habitat and biota has occurred, but the basic ecosystem functions are still predominantly unchanged.                                                                                                 |
| D                      | Largely modified. A large loss of natural habitat, biota and basic ecosystem functions has occurred.                                                                                                                                                 |
| Е                      | Seriously modified. The loss of natural habitat, biota and basic ecosystem functions is extensive.                                                                                                                                                   |
| F                      | Critically / Extremely modified. The system has been critically modified with<br>an almost complete loss of natural habitat and biota. In the worst instances,<br>basic ecosystem functions have been destroyed and the changes are<br>irreversible. |

If the Overall Integrity Score is positive, this denotes a move toward natural, i.e. restoration initiatives:

- $\leq 1$  or  $\geq -1$ , the ecological condition will remain within the same category as present day/baseline;
- >1 and ≤2, the ecological condition will move one category closer to natural;
- >2 and  $\leq$ 3, the ecological condition will move two categories closer to natural;
- Etc.

#### If the Overall Integrity Score is negative, this denotes a move away from natural:

- $\bullet$   $\geq$ -1, the ecological condition will remain within the same category as present day;
- <1 and  $\geq$  2, the ecological condition will move one category further away from natural;
- <2 and  $\geq$  3, the ecological condition will move two categories further away from natural;
- Etc.

Overall Integrity Scores are calculated for the ecosystem as a whole, i.e., the combined effect of changes in the indicators. The results can be plotted as Overall Integrity Score (y-axis) vs. percentage or volume of MAR (x-axis) or, where there are relatively few points as in this project, simply as a plot of Overall Integrity Scores per site, which allows for easy comparison between sites.



The categories represent points along a continuum, thus the 'divisions' between the categories are only guides as to the general position at which the ecological condition might be expected to shift from one category to the next. They provide an indication of the <u>relative</u> categories associated with each scenario and should not be viewed as an absolute prediction of future condition.

### 3.2 The DRIFT-DSS

The DRIFT-DSS is programmed using Delphi XE and uses a NexusDB v3 database. The software is designed for use in all computers running Windows XP and upwards, and the DSS supports both single-user and multi-user modes. The DSS makes use of Google Earth (standard version) in the delineation module: if the images from this module are used in reports, a Google Earth Pro licence is required.

The DRIFT-DSS is divided into three sections, each dealing with a different stage in the EWR determination process. These are (Brown *et al.* 2013; Figure 3.4).

- 1. Set-up
- 2. Knowledge Capture
- 3. Analysis.

The first two sections deal with the population of the DSS and the calibration of the relationships that will be used to predict the ecosystem response to changes in flows. The third section is used to generate results once the first two sections have been populated, and to produce the reports and graphics detailing the predictions for the scenarios under consideration.

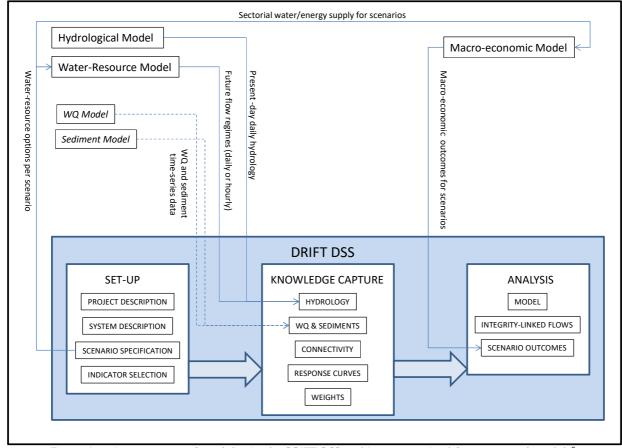



Figure 3.4 Arrangement of modules in the DRIFT-DSS and inputs required from external models<sup>8</sup>.

<sup>&</sup>lt;sup>8</sup> Note: outputs of macro-economic modules can currently not be imported into the DSS, but this will be included in later versions.



All hydrological modelling is done outside of the DSS. The DSS is dependent on the outputs of a hydrological model to provide baseline basin hydrology and a water resource model used to predict the changes in the flow regime associated with the proposed water-resource developments under the various scenarios.

Additional detail on the DSS, including a User Manual, is available in Brown et al. (2013).



## 4 Overview of the study area

The study area for RESILIM-O is the Olifants Basin in South Africa and Mozambique (Figure 4.1).

The Olifants River rises in the west in the highly-developed and densely-populated province of Gauteng. It flows through the South African provinces of Limpopo and Mpumalanga, then through the Kruger National Park before it enters the Gaza province of Mozambique, and becomes the Rio das Elephantes. The river reaches the sea near Xai-Xai on the east coast of Mozambique about 300 km north of Maputo. The main tributaries, from west to east, are Bronkhorstspruit (Gauteng Province), Elands River (Mpumalanga Province), Steelpoort River (Mpumalanga Province), Blyde River (Limpopo Province), Letaba River (Kruger National Park), Singuedzi /Shingwidzi River (Gaza) and, finally, the Limpopo (Gaza). The Olifants- Elefantes River, until the confluence with the Limpopo, is *c*. 955 km long (*c*. 831 km in South Africa), with the final Limpopo reach to the sea being c. 303 km long (source: DWA 1:500 000 rivers coverage). Within South Africa the Olifants basin covers about 54 570 km<sup>2</sup> (RHP, 2001) with a runoff of approximately 2400 MCM / a.

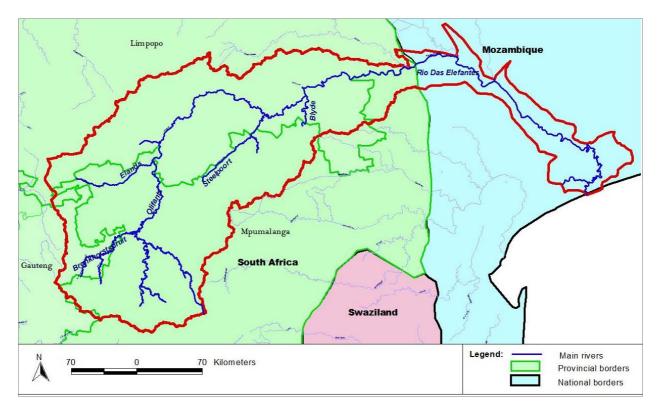



Figure 4.1 The Olifants River Basin and RESILIM-O study area

The South African portion of the basin was referred to as the Olifants Water Management Area (WMA) (Table 4.1) and was divided into sub-WMAs called: the Upper Olifants, Middle Olifants, Steelpoort and Lower Olifants. In terms of the proposed new WMAs boundaries (to reduce the number from 19 to 9) in the second National Water Resources Strategy, the Olifants WMA remains but will now include the Letaba river (i.e. the remaining B quaternaries from the B primary drainage region) (DWA 2013).



### TABLE 4.1MEAN ANNUAL RUNOFF (MAR) FOR THE FOUR WMA SUB-AREAS IN THE SOUTH AFRICAN<br/>PORTION OF THE OLIFANTS BASIN AND FOR MOZAMBIQUE

| AREA                          | SUB-AREAS OF THE OLIFANTS WMA            | NATURAL MAR |
|-------------------------------|------------------------------------------|-------------|
|                               | Upper Olifants                           | 465         |
| (SOUTH AFRICA)<br>(DWA 2010B) | Middle Olifants                          | 481         |
|                               | Steelpoort                               | 396         |
|                               | Lower Olifants                           | 698         |
|                               | Total for SA portion                     | 2 040       |
|                               | Location                                 |             |
| LIMPOPO MOZAMBIQUE AT CHOKWE  | At Chokwe (range from different studies) | 3707-4087   |

There are around 140 gauging stations<sup>9</sup> listed with DWA for the South African portion, but most of these are no longer functional. There are also c. 119 DWA water quality monitoring points. There are three gauging weirs on the Elefantes section in Mozambique and three on the Limpopo section. None of them appear to be currently active.

The rivers and wetlands in the Olifants Basin are subject to severe impacts including pollution from sewage, mining and other sources. Water quality in the Loskop Dam is extremely poor with constant cyanobacteria blooms since 2008. Filamentous algae also cause problems in the irrigation system arising from this dam. There have been significant fish and crocodile deaths both in Loskop Dam and in the Lower Olifants within Kruger National Park, which appear to be linked to water quality issues arising from pollution, as well as high levels of flow regulation, abstraction, sediment from releases from Phalaborwa barrage, and sedimentation up into the Olifants Gorge from the Massingir Dam. These factors have contributed to a decline in ecosystem condition throughout the basin.

The once perennial flow in the Olifants River is now seasonal, and flow through the Kruger National Park has ceased several times in the last five years, despite legal provisions for the Reserve (King and Pienaar 2011; Pollard and du Toit 2011). Flow into Mozambique is significantly reduced from natural levels and there is no cross-border flow for three to four months in a year. Salination in the lower sections of the river, may be due to reduced freshwater flows and consequent seawater intrusion.

For additional details refer to DWA (2010b (EGSA); 2011a-c (Reconciliation); 2012a, b and 2013 (Classification)), Pollard and du Toit (2011), the Internal Strategic Perspective (DWAF, 2004), and other reports mentioned in this Section.

<sup>&</sup>lt;sup>9</sup> This number varies between sources.



#### 4.1 Industry and demographics

#### 4.1.1 South Africa

About 10% of South Africa's population resides in the Olifants Basin (IWMI 2008), with about 67% of the population being rural and the remaining 33% urban. The majority of people live in the middle Olifants area. Access to water for productive, domestic and recreation use is inequitably distributed, with a "water poverty index" from 2001 ranking the Olifants Basin water poverty at nearly twice the national average (Magagula *et al.* 2006, cited in IWMI 2008). The main economic activities are agriculture, mining and power generation.

Since 1994, the Olifants Basin in South Africa has been characterised by a rapid expansion of mining, in particular of platinum and coal, and electricity generation. The basin produces *c*. 55% of South Africa's electricity and c. 90% of its coal is mined there (Water Wheel 2010). There are currently eight major coal-fired electricity power stations in the basin (van Vuuren *et al.* 2003, cited in IWMI 2008), and decant of water from collieries is estimated to be around 170-200 million litres annually (Mining Weekly 2009). This has led to a precipitous increase in the pollution threats to the river ecosystem. This is illustrated by the cumulative capacity over time of various slimes, tailings and other pollution control dams in the South African section of the basin (Figure 4.2) shows the structures listed on <u>www.dwa.gov.za</u>, but may exclude some of the dams as designations are not always given. Nonetheless, the rapid in increase in capacity over the last 15 or so years is clear.

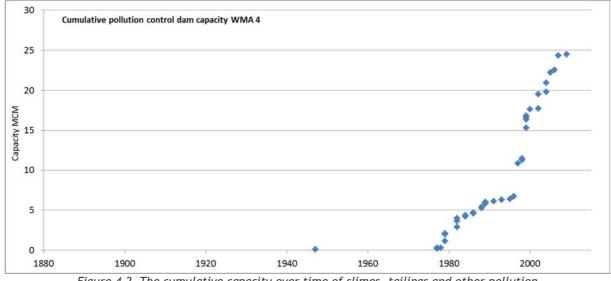


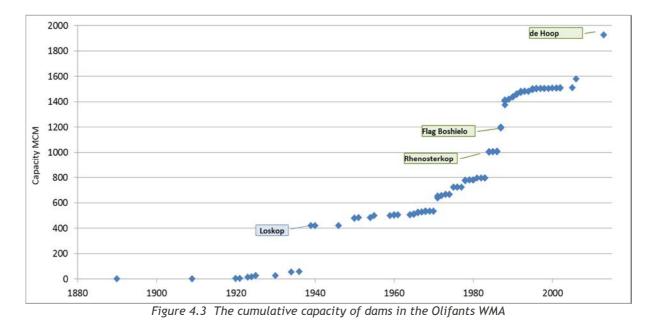

Figure 4.2 The cumulative capacity over time of slimes, tailings and other pollution control dams in the Olifants WMA.

#### 4.1.2 Mozambique

In Mozambique, the main centre in the basin is Xai-Xai (population 127 000) but there are smaller settlements at Chokwe (c. 62 000), Massingir (all three have airports), Guija, Barrio, Nwanhapale, and Duma amongst others. Chokwe is the location of a large irrigation scheme, most of which is currently used by subsistence farmers, and there are small schemes near Massingir Dam. Small-scale agriculture is the main source of food and income along the Elefantes-Limpopo, while fishing can supplement food supplies, but is economically important to a relatively few fishers in Massingir Dam and in the river.



The Chokwe scheme consists of about 34 000 ha, around 10 000 ha of which is currently unusable due to salinization and flood damage from the 2000 and 2012 floods, and about 7 000 ha is currently utilised. Of the utilised area, the bulk is used by subsistence farmers.


The Limpopo National Park (LNP), which is part of the Great Limpopo Transfrontier Park created in 2001, is bounded by the Olifants River in the south and the Limpopo River in the north and east. There is a "voluntary resettlement programme" in place which offers incentives for villages to move to the buffer zone (which currently has about 4000 residents). Some villagers may have had to move (or change the location of the grazing and crop-growing activities) two or three times due to the initial building of the dam, the civil war, the raising of the dam wall, the declaration and zoning of the Park, the demarcation of land for a biofuels project (land was already in use by communities, and land earmarked for LNP resettlement was then also earmarked for the biofuels project), and for other rehabilitation efforts on the dam. Various LNP initiatives exist, such as irrigation projects (benefiting about 3 240 community members), tree nurseries (to supply trees to the Park and firewood to the community) and the upgrading of roads. A 56-km long barrier fence, from Massingir Gate in the west to the confluence with the Limpopo River, has been completed to separate the buffer zone from the wildlife areas and thus reduce human-wildlife conflict (http://www.peaceparks.co.za/programme. php?pid=25&mid=1009).

### 4.2 Water use and related infrastructure

#### 4.2.1 South Africa

Total water use in the Olifants Basin within South Africa is estimated at c. 1016 million m3/a, i.e., 95.6% of the available water resources (DWA 2011a). Irrigated agriculture is the largest user and accounts for about 48% of total water use in the basin. Thereafter, mining and power generation use about 30%, with other industrial and domestic use making up the remaining 22% (DWA 2011a).

Provision of storage capacity to meet water demand in the basin has followed a steady increasing trend over the last 70 years, with a period of rapid expansion in the late 1980s-early 1990s (Figure 4.3). As was the case for Figure 4.2, Figure 4.3 shows only those structures with clear designations as listed on www.dwa.gov.za.





Some of the larger storage dams in the South African portion of the basin are: Loskop Dam, Rhenosterkop Dam, Flag Boshielo Dam, Witbank Dam, Kettingspruit Dam, Bronkhorstspruit Dam, Blyderivierspoort Dam, Middelburg Dam, and Rust de Winter Dam. The de Hoop Dam, with a capacity of 347.4 MCM, has recently been completed. The Record of Decision (RoD) makes provision for Reserve releases of approximately 31.6 MCM per annum (32% of the historical firm yield), and the outlet works were designed to facilitate variable releases of high and low flows (DWAF 2006 cited in DWA 2010b). There are three Water Court orders pending clarification which require releases from Witbank, Middelburg and Loskop Dams.

Water is transferred into the basin from the Inkomati, Usutu and the Vaal basins, and used for cooling power stations, and from the Vaal and Levuvu basins to augment domestic, municipal and mining supply. A small amount of water is also transferred out of the basin to the Limpopo and Crocodile (West) basins.

#### 4.2.2 Mozambique

The Massingir Dam (capacity 2 800 MCM), which was built in 1977, is the main impoundment on the river in Mozambique. It is situated about 30 km downstream of the South African border, with the inundation area extending into the Olifants Gorge just after the confluence with the Letaba River in the Kruger National Park. The dam sprung a leak just after completion, which prevented the reservoir from holding more than 40 percent of its capacity. This, together with the civil war, delayed a plan to build a 40-MW hydropower plant. Various rehabilitation projects have been proposed or undertaken since 1993, but the main work began in the 2003 with African Development Bank funding the Massingir Dam and Smallholder Agricultural Rehabilitation Project (MDSARP), with the intention of improving safety and yield from irrigated areas. The dam wall was also raised. The EWR study in Section 5.5 formed part of the EIA for this work. In 2007-08, further dam rehabilitation was undertaken and an additional spillway was constructed (the work also included installing pumps at Chilaulen, downstream of Xai Xai to prevent salt intrusion). Thereafter, the bottom outlet pipes ruptured in 2008, and were repaired in 2009-11 and an auxiliary spillway was constructed in 2011-12.

A biofuel project was initiated with ProCana to irrigate over 30 000 hectares of cane at Massingir, but the ProCana contract was cancelled after two years, and awarded to Massingir Agro-Industrial (a partnership including SIAL of Mozambique and TSB of South Africa (Milgroom 2013). The project involves estmiblishment of around 37 000 ha of sugar cane and the building of a processing plant (for sugar, ethanol and the production of electricity) at Massingir Dam. It appears that the contract includes direct abstraction from Massingir Dam (Engineering News, Apr 26, 2013).

There is a barrage, the Macarretane barrage, just downstream of the confluence between the Elefantes and Limpopo Rivers, which supplies water to the Chokwe irrigation scheme.

There is currently no information available regarding the envisaged allocations to the Massingir community irrigation schemes, the biofuels / sugar project, Chokwe irrigation or the EWRs.



## 5 Previous EWR-related studies in the Olifants Basin

This chapter summarises the previous studies in the basin that generated information pertaining to the objectives of RESILIM-O, S&EWR. The studies included in the review are listed in Table 5.1 and include, *inter alia*: EWR/Reserve determinations, Classification and valuation of ecosystem services.

| TABLE 5.1 STUDIES INCLUDED IN THIS REPORT. | SHADING DENOTE STUDIES THAT OFFER THE MOST |
|--------------------------------------------|--------------------------------------------|
| RELEVANT AND USEFUL DATA IN TERMS          | OF RESILIM-O, S&EWR (EXT=EXTRAPOLATED).    |

| Туре                                    | Reference                       | Focus Area         | <b>Rivers/wetlands</b>                      | EWR Sites                                               | Quat                 | Level                            | Method               |
|-----------------------------------------|---------------------------------|--------------------|---------------------------------------------|---------------------------------------------------------|----------------------|----------------------------------|----------------------|
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                 | 1000071100         | Olifants                                    | IFR1                                                    | B11J                 | Ext from IFR2                    | BBM                  |
|                                         |                                 |                    | Olifants                                    | IFR2                                                    | B32A                 | Comprehensive                    | BBM                  |
|                                         |                                 | Upper Olifants     | Klein Olifants                              | IFR3                                                    | B12E                 | Comprehensive                    | BBM                  |
|                                         |                                 |                    | Wilge                                       | IFR4                                                    | B20J                 | Comprehensive                    | BBM                  |
|                                         |                                 |                    | Olifants                                    | IFR5                                                    | B32D                 | Comprehensive                    | BBM                  |
|                                         |                                 |                    | Lower Elands                                | IFR6                                                    | B31G                 | Comprehensive                    | BBM                  |
|                                         | DWAF (2001a;                    | Middle             | Middle Elands                               | IFR6b                                                   | B31D, Quat<br>outlet | Ext from IFR6                    | BBM                  |
|                                         |                                 |                    | Upper Elands                                | IFR6c                                                   | B31C, Quat<br>outlet | Ext from IFR6                    | ВВМ                  |
| NC3CI VC                                | 2001b; 2001c)                   |                    | Olifants                                    | IFR7                                                    | B51G                 | Comprehensive                    | BBM                  |
|                                         |                                 |                    | Olifants                                    | IFR8                                                    | B71B                 | Comprehensive                    | BBM                  |
|                                         |                                 |                    | Steelpoort                                  | IFR9                                                    | B41J                 | Comprehensive                    | BBM                  |
|                                         |                                 |                    | Steelpoort                                  | IFR10                                                   | B41K                 | Ext from IFR9                    | BBM                  |
|                                         |                                 |                    | Olifants                                    | IFR11                                                   | B71J                 | Ext from IFR 13                  | BBM                  |
|                                         |                                 | Lower Olifanta     | Blyde                                       | IFR12                                                   | B60J                 | Comprehensive                    | HFSR                 |
|                                         |                                 | Lower Olifants     | Olifants                                    | IFR 13                                                  | B72D                 | Comprehensive                    | BBM                  |
|                                         |                                 |                    | Selati                                      | IFR14a                                                  | B72H                 | ?                                | BBM                  |
|                                         |                                 |                    | Selati                                      | IFR14b                                                  | B72K                 | Ext from IFR14a                  | BBM                  |
|                                         |                                 |                    | Olifants                                    | IFR16 / 17                                              | B73H                 | Comprehensive                    | BBM                  |
| Intermediate                            | Salomon                         |                    | Elefantes                                   | MOZ-1                                                   | Y30C                 | Intermediate                     | HFSR                 |
| Reserve                                 | (2007a)                         | Mozambique         | Limpopo                                     | MOZ-2                                                   | Y30F                 | Intermediate                     | HFSR                 |
| Intermediate                            | · · · ·                         | Lower Olifants     |                                             | DWA-EWR1                                                | B41H                 | Comprehensive                    | HFSR                 |
|                                         | Kleynhans<br>(2007)             | Lower Olifants     | Blyde River                                 | n/a                                                     | B60B                 | Desktop level                    | Desktop Model        |
| Rapid Reserve                           | Singh (2007)                    | Lower Olifants     | Ohrigstad River                             | n/a                                                     | B60E, B60F           | Desktop level                    | Desktop Model        |
| Rapid Reserve                           | Oryx Environ-<br>mental. (2006) | Upper Olifants     | Steenkoolspruit<br>River and trib           | n/a                                                     | B11C, B11D,<br>B11E  | Desktop level                    | Desktop Model        |
| Rapid Reserve                           | -                               | Upper Olifants     | Noupoortspruit                              | NOU-EWR1                                                | B11G                 |                                  |                      |
| Rapid Reserve                           | -                               | Lower Olifants     |                                             | TRE-EWR1                                                | B60C                 |                                  |                      |
| Rapid Reserve                           | Ncapayi (2001)                  | Middle<br>Olifants | Mapochs/ Masala                             | -                                                       | B41C                 | Desktop level                    | Desktop Model        |
| Rapid Reserve                           | Grant et al.<br>(2006)          | Upper Olifants     | Rietspruit River<br>(with B11E<br>wetlands) |                                                         | B11E                 | Desktop level                    | Desktop Model        |
| RHP                                     | See Section<br>5.2              | Whole basin        |                                             | RHP sites                                               | Various              | Not applicable                   |                      |
| Updated PES                             | DWA (2014b)                     | Whole basin        |                                             | Not applicable                                          | All                  | Sub-<br>quaternaries,<br>desktop | Habitat<br>Integrity |
| EGSA                                    | DWA (2010a)                     | Whole basin        |                                             | No sites-but<br>higher<br>confidence nodes<br>available | All                  | Not applicable                   |                      |
|                                         |                                 | Upper Olifants     | Upper Klein<br>Olifants                     | OLI-EWR1                                                | B12C                 | Rapid 3                          | Rapid 3              |
|                                         |                                 |                    | Upper Steelpoort                            | OLI-EWR2                                                | B41B                 | Rapid 3                          | Rapid 3              |
|                                         |                                 | Middle             | Kranspoortspruit                            | OLI-EWR3                                                | B32A                 | Rapid 3                          | Rapid 3              |
| Classification                          | DWA (2012,                      | Olifants           | Klip                                        | OLI-EWR4                                                | B41F                 | Rapid 1                          | Rapid 1              |
|                                         | 2014a)                          | otilalits          | Watervals                                   | OLI-EWR5                                                | B42G                 | Rapid 3                          | Rapid 3              |
|                                         |                                 |                    | Upper Spekboom                              | OLI-EWR6                                                | B42D                 | Rapid 3                          | Rapid 3              |
|                                         |                                 |                    | Klaserie                                    | OLI-EWR7                                                | B73A                 | Rapid 3                          | Rapid 3              |
|                                         |                                 | Lower Olifants     |                                             | OLI-EWR8                                                | B60H                 | Rapid 2                          | Rapid 2              |
|                                         |                                 |                    | Dorpspruit                                  | OLI-EWR9                                                | B42B                 | Rapid 1                          | Rapid 1              |



Studies on dams, groundwater and wetlands are excluded from this review as they are beyond the scope of the current workpackage. Water quality is dealt with as part of another workpackage, but is included to the extent that it was part of the studies mentioned in Table 5.1.

The review focussed on those studies that offered the most relevant data for the population and calibration of the DRIFT DSS (shaded in Table 5.1). Results presented in this section are summaries intended to convey overall impressions. More detailed results are provided in Appendix B and Appendix C. The locations of the EWR sites listed in Table 5.1 are illustrated in Figure 5.1.

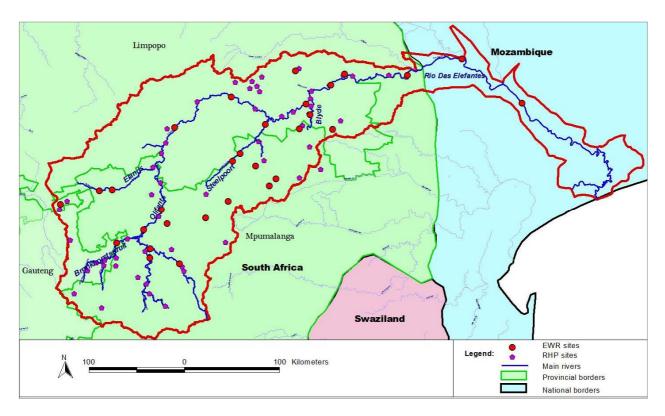



Figure 5.1 The Olifants River Basin and RESILIM-O study area showing the EWR Sites mentioned in Table 5.1 and the RHP sites (not all of which are necessarily active).

# 5.1 Desktop assessments of Present Ecological State (PES; 2000, 2014)

In 1999, desktop assessments (based on expert opinion) of PES and Ecological Importance and Sensitivity (EIS) were done for the whole of South Africa at a quaternary catchment scale (Kleynhans 2000). This was repeated, starting in 2010, at a sub-quaternary (quinary or tributary level). The updated PES for the Olifants WMA began in 2011 and the final reports should be available in 2014 (DWA 2014b, in prep.).

The PES-EIS database is used in the eco-classification process, in the River Health Programme (RHP), in EWR determinations (if site visits are not undertaken), and in setting conservation priorities and biodiversity targets.



These studies generated the following data of potential use in RESILIM-O, S&EWR:

- Updated, relatively fine-scaled PES assessments for the whole basin<sup>10</sup>. Where information from the Reserves or Classification is unavailable, the updated PES information could be used to calibrate the outputs of the DRIFT-DSS.
- Comparable data on ecosystem condition in 1999 and 2011 that could be used to trace trends, and evaluate response to flow and other anthropogenic changes in the basin;

### 5.1.1 Results

A comparison between the results for the Olifants Basin of the 1999 and 2011 assessments indicate that most quaternaries (54%) are the same ecological category, while 25% are worse and 21% are better. <u>Note</u> that this is based on aggregating the sub-quaternary ecological categories of 2011 to quaternary level, using a length-weighted average.

Given the general narrative of a catchment with a rapid increase in mining, energy and other polluting activities, it may seem surprising that there was not a more obvious decline in river health. However, this may be because the quaternary level assessments of 1999 concentrated on mainstem rivers, whereas the quinary-level assessments in 2011 gave tributaries more consideration. Since, tributaries tend to be in better condition that mainstems, this may have resulted in a higher score when combined for the quaternary.

In general, desktop assessments are less reliable than field based assessments. Studies where site visits were undertaken and whose PESs are therefore probably more reliable are the:

- 2001 Reserve study (DWAF 2001a-c);
- 2010 Reconciliation Study (11 of the 19 sites done in 2001; DWA 2011b); and
- 2011 Classification Study (9 new sites; DWA 2011d).

Table 5.2 lists those quaternaries whose ecological category changed according to the 1999 and 2011 desktop PES assessments, plus information from the Reserve, Reconciliation and Classification studies. If relevant, comment from DWAF/DfID (2007) is provided: this was a desktop assessment of the state of aquatic ecosystems in the Olifants basin undertaken in 2006 with specialist input.

TABLE 5.2 QUATERNARY CATCHMENTS WHOSE EC CHANGED ACCORDING TO 1999 AND 2011 DESKTOP, WITH ECS AND COMMENTS FROM OTHER STUDIES FOR COMPARISON.

|      |                | Deskte | Desktop PES |                  |           | EWR             | Site visit      | s EC                        |                                                                                                                                                                                                     |
|------|----------------|--------|-------------|------------------|-----------|-----------------|-----------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quat | River          | 1999   | 2011        | 2011 vs.<br>1999 | EWR Sites | Reserve<br>2001 | Recon<br>2010/1 | Classifi<br>-cation<br>2011 | Comments                                                                                                                                                                                            |
| B11A | Olifants       | С      | D           | worse            |           |                 |                 |                             | DWA/DfID (2007); B11A, D-G = E                                                                                                                                                                      |
| B11F | Olifants       | D      | E           | worse            |           |                 |                 |                             | B11B and C = D/E                                                                                                                                                                                    |
| B11J | Olifants       | D      | с           | better           | IFR1      | D               | D               | D                           | DWA/DfID (2007) quat = C<br>DWA (2011b): Deterioration because of water<br>quality problems - inadequate wastewater<br>treatment (Real degradation not reflected in<br>EC due to change in methods) |
| B11K | Klipspruit     | D      | E           | worse            |           |                 |                 |                             |                                                                                                                                                                                                     |
| B12B | Klein-Olifants | D      | E           | worse            |           |                 |                 |                             |                                                                                                                                                                                                     |
| B12C | Klein-Olifants | С      | D           | worse            |           |                 |                 |                             |                                                                                                                                                                                                     |

<sup>10</sup> The Classification study used the updated PES/EIS estimates or those from the Reconciliation study where these were available.



|              |                                        | Deskt  | op PES | Change                 |              | EWR             | Site visit      | s EC                        |                                                                                                                                                 |
|--------------|----------------------------------------|--------|--------|------------------------|--------------|-----------------|-----------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Quat         | River                                  | 1999   | 2011   | 2011 vs.<br>1999       | EWR Sites    | Reserve<br>2001 | Recon<br>2010/1 | Classifi<br>-cation<br>2011 | Comments                                                                                                                                        |
| B12E         | Klein-Olifants*                        | с      | с      | no<br>change           | IFR3         | D               | D               | C***                        | DWA (2011b): Deterioration due to water<br>quality problems - inadequate wastewater<br>treatment                                                |
| B20A         | Bronkhorstspruit                       | C      | D      | worse                  |              |                 |                 |                             |                                                                                                                                                 |
| B20C         | Bronkhorstspruit                       | C      | D      | worse                  |              |                 |                 |                             | DW(4 (D(1D (2007) such = D                                                                                                                      |
| B20G<br>B20J | Saalboomspruit**<br>Wilge*             | D<br>C | c<br>c | better<br>no<br>change | IFR4         | В               | с               | с                           | DWA/DfID (2007) quat = D<br>DWA (2011b): Marked degradation in<br>instream condition (possible main cause<br>being mining along Saalboomspruit) |
| B31D         | Middle Elands and<br>Enkeldoringspruit | D      | с      | better                 | IFR6b        | E               | n/a             | с                           | DWA/DfID (2007) quat = D                                                                                                                        |
| B31E         | Gotwane                                | C      | D      | worse                  |              |                 |                 |                             |                                                                                                                                                 |
| B31G         | Elands *                               | D      | D      | no<br>change           | IFR6         | E               | C/D             | D                           | DWA (2011b): Instream improvement may be<br>due to changed operation of Rhenosterkop<br>Dam ****                                                |
| B31H         | Elands                                 | D      | E      | worse                  |              |                 |                 |                             |                                                                                                                                                 |
| B31J         | Elands                                 | D      | E      | worse                  |              |                 |                 |                             | DWA/DfID (2007) quat = E                                                                                                                        |
| B32B         | Selons                                 | D      | C      | better                 |              | 6               | 6               | 6                           | DWA/DfID (2007) quat = B/C                                                                                                                      |
| B32D         | Olifants                               | D<br>D | C<br>C | better                 | IFR5         | С               | С               | С                           | DWA/DfID (2007) quat = C                                                                                                                        |
| B32F<br>B32G | Bloed<br>Moses                         | C      | D      | better<br>worse        |              |                 |                 |                             | DWA/DfID (2007) quat = C                                                                                                                        |
| B320<br>B32H | Moses                                  | C      | D      | worse                  |              |                 |                 |                             |                                                                                                                                                 |
| B41A         | Grootspruit                            | C      | D      | worse                  |              |                 |                 |                             |                                                                                                                                                 |
| B41B         | Steelpoort                             | C      | D      | worse                  | OLI-EWR2     | n/a             | n/a             | С                           | DWA/DfID (2007) quat = D                                                                                                                        |
| B41D         | Steelpoort                             | В      | C      | worse                  |              |                 |                 | -                           |                                                                                                                                                 |
| B41G         | Groot-Dwars                            | В      | D      | worse                  |              |                 |                 |                             |                                                                                                                                                 |
| B41H         | Steelpoort &<br>Dwars                  | С      | D      | worse                  | DWA-<br>EWR1 | n/<br>a B/C:    | 2008 n/a        | B/C                         |                                                                                                                                                 |
| B41J         | Steelpoort                             | С      | E      | worse                  | IFR9         | D               | C/D             | D                           |                                                                                                                                                 |
| B42B         | Dorpspruit &<br>Doringbergspruit       | D      | с      | better                 | OLI-EWR9     | n/a             | n/a             | C/D                         | DWA/DfID (2007) quat = C/D                                                                                                                      |
| B42D         | Spekboom                               | В      | D      | worse                  | OLI-EWR6     | n/a             | n/a             | С                           |                                                                                                                                                 |
| B42E         | Spekboom                               | В      | С      | worse                  |              |                 |                 |                             |                                                                                                                                                 |
| B51A         | Motsephiri                             | С      | D      | worse                  |              |                 |                 |                             |                                                                                                                                                 |
| B51B         | Olifants                               | E      | C      | better                 |              |                 |                 |                             | Not in DWA/DfID (2007)                                                                                                                          |
| B51E         | Olifants                               | E      | C      | better                 |              |                 |                 |                             | DWA/DfID (2007):Endorheic pans                                                                                                                  |
| B51F         | Nkumpi                                 | D<br>D | ر<br>۲ | better                 |              |                 |                 |                             | DWA/DfID (2007) quat = C                                                                                                                        |
| B51H<br>B52J | Ngwaritsi<br>Mphogodima                | D      | E<br>C | worse<br>better        |              |                 |                 |                             |                                                                                                                                                 |
| B60B         | Blyde                                  | C      | B      | better                 |              |                 |                 |                             | DWA/DfID (2007) quat = B/C                                                                                                                      |
| B60C         | Treur                                  | A      | B      | worse                  |              |                 |                 |                             |                                                                                                                                                 |
| B60E         | Ohrigstad                              | В      | C      | worse                  | -            |                 |                 |                             |                                                                                                                                                 |
| B60F         | Ohrigstad                              | D      | C      | better                 |              |                 |                 |                             | DWA/DfID (2007) quat = C                                                                                                                        |
| B60J         | Blyde                                  | В      | С      | worse                  | IFR12        | В               | B/C             | B/C                         | DWA/DfID (2007) quat = B                                                                                                                        |
| B71A         | Olifants                               | D      | С      | better                 |              |                 |                 |                             | DWA/DfID (2007) quat = D                                                                                                                        |
| B71B         | Olifants                               | D      | С      | better                 | IFR8         | D               | C/D             | D                           | DWA/DfID (2007) quat = D                                                                                                                        |
| B71C         | Mohlapitse                             | A      | В      | worse                  |              |                 |                 |                             |                                                                                                                                                 |
| B71E         | Motse                                  | C      | E      | worse                  |              |                 |                 |                             |                                                                                                                                                 |
| B71G         | Olifants<br>Makhutawi                  | D      | C      | better                 |              |                 |                 |                             | DWA/DfID (2007) quat = D<br>DWA/DfID (2007) quat = C/D                                                                                          |
| B72B<br>B72E | Makhutswi<br>Ngwabitsi                 | D<br>C | B<br>D | better<br>worse        |              |                 | <u> </u>        |                             | DWA/DID(2007) quat = C/D                                                                                                                        |
| B72E         | Ga-Selati                              | D<br>D | C      | better                 | IFR14a       | С               | n/a             | C                           | DWA/DfID (2007) quat = D                                                                                                                        |
| B72J         | Molatle                                | D      | C      | better                 |              | <u> </u>        | α               | ~                           | Not in DWA/DfID (2007)                                                                                                                          |
| B72K         | Ga-Selati                              | D      | E      | worse                  | IFR14b       | E               | n/a             | E                           |                                                                                                                                                 |
| B73B         | Klaserie                               | D      | C      | better                 |              |                 |                 |                             | DWA/DfID (2007) quat = B/C                                                                                                                      |
| B73F         | Timbavati                              | C      | В      | better                 |              |                 |                 | 1                           | DWA/DfID (2007) quat = A                                                                                                                        |
| B73G         | Olifants                               | С      | В      | better                 |              |                 |                 |                             | DWA/DfID (2007) quat = C                                                                                                                        |
| B73J         | Olifants                               | C      | А      | better                 | IFR16/17     | C C             | С               |                             | DWA/DfID (2007) quat = C                                                                                                                        |

Included because of changes recorded in Reconciliation Study (DWA 2011b).
 But see comments for B20J-IFR4.
 No explanation provided for the change.
 Also known as "Mkhombo Dam". Incorrectly as "Rhenosterpoort" in some Reconciliation reports. See: http://www.dwaf.gov.za/DSO/Documents/Cat%201,%202%20and%203%20Dams%20Jan%202014.kmz).



## 5.2 River Health Programme (RHP)

The objective of RHP is to collect information regarding the ecological state of river ecosystems in South Africa. A State-of-the-River Report for the Crocodile, Sabi-Sand and Olifants River Systems was compiled in 2001. Since then, it is unclear to what extent that RHP monitoring has been on-going in the Olifants Basin.

Refer to: <u>http://www.dwaf.gov.za/iwqs/rhp/state\_of\_rivers/crocsabieolif\_01\_toc.html</u>

## 5.2.1 Results

The 2001 RHP information was used in the various studies described here, but as far as we are aware has not yet been updated.

# 5.3 Olifants Basin Comprehensive Reserve determination (DWAF 2001a, b, c, and d)

The objectives of the Olifants Comprehensive Reserve determination study were to comply with the requirements of the NWA and to provide DWA (and other stakeholder) with information regarding the consequences of different ecological categories along different reaches of the ecosystem.

The study generated the following data of relevance to RESILIM-O, S&EWR:

- Summary data that could be useful for calibrating the outputs of the DRIFT assessment, including:
- Basin delineation;
  - Discipline specific PES (as at 1999-2000) assessments from site visits to 19 EWR sites;
  - Volume and distribution of water (EWRs) required to maintain up to three ecological conditions (PES, REC and AEC) at 18 sites;
- Discipline-specific summaries for geomorphology, water quality, riparian vegetation, invertebrates and fish that could be used to inform the selection of DRIFT indicators;
- Discipline-specific data that could be used to inform the development of response curves in the DRIFT-DSS, such as:
  - Motivations for depth and velocity requirements for biotic indicators;
  - Lowflow stress assessments for IFR 12 for a range of biotic indicators;
- An evaluation of people's direct dependence on ecosystems for (DWAF 2001d; see Section 5.3.2) that could be used to inform the social indicators and response curves in the DSS.

## 5.3.1 Environmental Water Requirements

The most reliable EWR data for the Olifants WMA are available from the Comprehensive Reserve determinations conducted between 1999 and 2001 (DWAF 2001a-c), notwithstanding the fact that these were among the earliest such assessments in South Africa and many of the methods used were still under development. The BBM was used for all sites, except for IFR 12, which used HFSR. Much of the subsequent work, such as the calibration of the Desktop Model, and the EGSA and Classification Process, was based on these data.

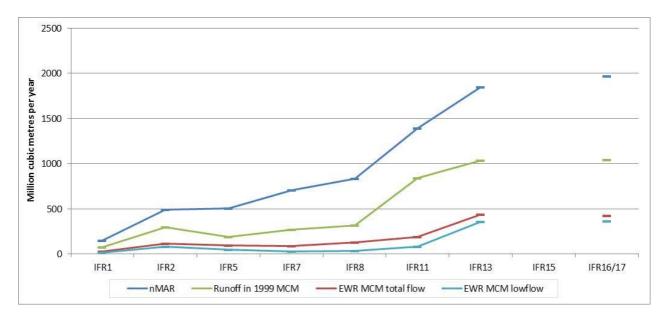


#### 5.3.1.1 Results

A summary of the EWRs from the Comprehensive Reserve determination (DWAF 2001a-c) is given in Table 5.3.

|      |                   |              | nMAR,        | Runoff as      |     |     |              | EW                  | R for REC               |                         |
|------|-------------------|--------------|--------------|----------------|-----|-----|--------------|---------------------|-------------------------|-------------------------|
| Quat | River             | Site         | 1999<br>MCM* | in 1999<br>MCM | PES | REC | %<br>nMAR**  | MCM per<br>annum*** | % nMAR-<br>lowflow only | MCM<br>lowflow<br>only* |
| B11J | Olifants          | IFR1         | 148.094      | 74.33          | D   | С   | 18.63        | 27.59               | 9.980                   | 14.8                    |
| B32A | Olifants          | IFR2         | 489.731      | 298.89         | С   | В   | 23.77        | 116.41              | 16.288                  | 79.8                    |
| B12E | Klein<br>Olifants | IFR3         | 73.675       | 40.8           | D   | С   | 27.01        | 19.90               | 13.243                  | 9.8                     |
| B20J | Wilge             | IFR4         | 192.857      | 126.39         | В   | В   | 29.94        | 57.74               | 16.319                  | 31.5                    |
| B32D | Olifants          | IFR5         | 502.596      | 190            | С   | С   | 19.01        | 95.54               | 9.996                   | 50.2                    |
| B31C | Upper Elands      | IFR6c        | 31.327       | 26.32          | С   | В   | 31.19        | 9.76                | 19.705                  | 6.2                     |
| B31D | Middle<br>Elands  | IFR6b        | 42.351       | 34.39          | E   | С   | 23.11        | 9.78                | 11.591                  | 4.9                     |
| B31G | Lower Elands      | IFR6         | 63.417       | 4.3            | E   | D   | 17.86        | 11.33               | 6.318                   | 4.0                     |
| B51G | Olifants          | IFR7         | 704.793      | 266.8          | E   | D   | 12.68        | 89.37               | 3.841                   | 27.1                    |
| B71B | Olifants          | IFR8         | 834.533      | 318.9          | D   | D   | 15.22        | 127.02              | 4.296                   | 35.9                    |
| B41J | Steelpoort        | IFR9         | 171.580      | 161.2          | D   | D   | 15.17        | 26.03               | 7.964                   | 13.7                    |
| B41K | Steelpoort        | IFR10        | 406.231      | 311.89         | D   | D   | 12.1         | 49.15               | 7.429                   | 30.2                    |
| B71J | Olifants          | IFR11        | 1393.158     | 843            | E   | D   | 13.7         | 190.84              | 5.986                   | 83.4                    |
| B60J | Blyde             | IFR12        | 383.703      | 275.8          | В   | В   | 34.49        | 132.44              | 27.956                  | 107.4                   |
| B72D | Olifants          | IFR13        | 1845.375     | 1035           | С   | В   | 23.57        | 434.87              | 19.425                  | 358.4                   |
| B72H | Selati            | IFR14a       | 54.93        | 40.5           | С   | C   | 31.17        | 17.11               | 19.587                  | 10.8                    |
| B72K | Selati            | IFR14b       | 64.97        | 48.5           | E   | D   | 24.80        | 16.11               | not given               | not given               |
| B73C | Olifants          | IFR15        | not given    |                | С   | В   | not<br>given |                     |                         |                         |
| B73H |                   | IFR16/1<br>7 | 1968.007     | 1043           | С   | В   | 21.63        | 425.68              | 18.344                  | 361                     |

TABLE 5.3 SUMMARISED EWR REQUIREMENTS FROM THE COMPREHENSIVE RESERVE (DWAF 2001A TO C).


\* Taken from the DWA excel file nMAR if different to that given in the Reserve reports

\*\* Taken from the REC and % signed off and in .tab files (where latter currently available - Middle and Lower only)

\*\*\* Calculated

The annual volumes for the mainstem Olifants are presented in Figure 5.3. Detailed EWRs (.tab files and flood requirements) are provided in Appendix A.5, with node level details in Appendix C.





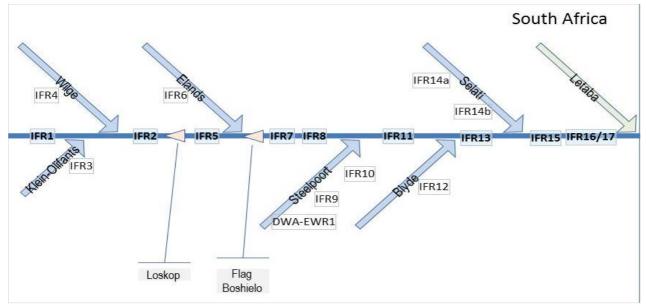



Figure 5.3 Olifants mainstem natural runoff, 1999 runoff and EWR requirements as MCM per year, plus a schematic showing the position of the EWR sites (not to scale)



### 5.3.2 Dependence on ecosystems<sup>11</sup>

The level of use of, or dependence on, five different aspects of the riverine ecosystem (DWAF 2001d), including:

- 1. As a source of potable water;
- 2. As a source of water for domestic animals;
- 3. Occurrence and utilization of fish;
- 4. Occurrence and utilization of plants; and
- 5. Utilisation of water for irrigation.

A qualitative scoring method was applied based on interviews key stakeholders or communities along each reach or within each similar zone. Overall reliance was evaluated using a combination of: extent / locality, duration and magnitude.

#### Levels of reliance for each of the sources of use / dependencies were rated as:

- High: If any one, or more, of the following situations occur:
  - a] The locality of resource is the river channel,
  - b] Duration of reliance on resource is permanent or
  - c] The magnitude of reliance on the resource is critical.
- Moderate: if one of the following situations occurs:
  - a] The locality of resource is the bank of the river or area further away,
  - b] The duration of reliance on resource is not permanent, or
  - c] The magnitude is not critical;
- Low: if one of the following situations occur:
  - a] The locality of resource is on the streams flowing into the Olifants River or its major tributaries or is further away,
  - b] The duration of reliance on resource is short term, or
  - c] The magnitude is medium to low;
- Very low reliance or no reliance if one of the following situations occur:
  - a] The locality of resource is not close to the Olifants River or its tributaries,
  - b] The duration of reliance on resource is temporary, or
  - c] The magnitude is very low.
- No reliance.

Information on timing of use, as well as plant species used was also provided in this study.

<sup>&</sup>lt;sup>11</sup> More details are provided for ecosystem services and social assessments methods than for EWRs as these are well described elsewhere.



An overall evaluation was also given across all the different levels of dependency, as follows:

- Reliance Class i: stakeholders rely absolutely on the river for their livelihood and should the resource quality of the river deteriorate, it will adversely influence communities.
- Reliance Class ii: stakeholders rely on the river but alternatives exist for them for the specific resource utilisation
- Reliance Class iii: stakeholders only marginally rely on the river for their well-being.
- Reliance Class iv: stakeholders do not rely on the river at all.

The approach adopted was simple and consistent and lends itself to conversion to a numeric scoring system comparable with PES or EC. As such, the information generated could be used to translate the data into DRIFT response curves provided:

- The qualitative scores were converted to numeric scores (see Results section for an example)
- It will be possible to specify whether an increase was 'good' or 'not good', i.e., whether 'more' of something is a 'good' or 'bad'.
- Thresholds or tipping points of depletion (assuming 'less' is 'bad') can be identified that would lead to critically low availability or accessibility.
- The results of the dependence / use of the five different aspects of the ecosystem, can be aggregated to site level.

#### 5.3.2.1 Results

As an illustration, and in the interest of comparison with other results, we have assigned simple, evenly spaced (i.e. linear) scores to the valuations as follows<sup>12</sup>:

- No reliance
- Very Low reliance 1

0

2

- Low reliance
- Moderate reliance 3
- High reliance 4
- Very High reliance 5

Similarly, for overall reliance across all resources, the following rating were applied:

- Reliance Class iv (none)
- Reliance Class iii
   1
- Reliance Class ii
   2
- Reliance Class I (high)
   3

Overall reliance is taken as the median of the scores for each component. On the basis of this approach, results per sector of the Olifants mainstem are presented in Table 5.4

<sup>&</sup>lt;sup>12</sup> Note that conversions from qualitative to numeric scores, should ideally take place with discussion with the specialist and / or stakeholders themselves, to ensure that non-linearities are captured.



TABLE 5.4RELIANCE ON THE UPPER AND MIDDLE OLIFANTS RIVERINE ECOSYSTEM, ADJUSTED TO<br/>NUMERIC SCORES AND MEDIANS FROM DWAF (2001D) FOR ILLUSTRATIVE PURPOSES.See text for scoring. The scores in the last row of each section "Reliance Class Of River" (0-3) are

directly from DWAF (2001d), while the score in the shaded top corner of each section under the heading "Median" are calculated from the numeric scores used in this example (0-3). "Sectors" are the kilometres along the river (e.g. km 1 - 18). Scores for each aspect are 0-5.

| Resource and River Sectors (km)                                           |               | Co          | mmunities | -          |        | Median |
|---------------------------------------------------------------------------|---------------|-------------|-----------|------------|--------|--------|
| UPPER                                                                     |               |             |           |            |        |        |
| Sectors 1 to 18                                                           | Middelkraal   | Roodekop    | Driehoek  | Klijnkopje |        | 2      |
| Source of potable water                                                   | 2             | 2           | 2         | 2          |        | 2      |
| Source of water for domestic animals,                                     | 4             | 4           | 4         | 1          |        | 1      |
| game                                                                      | 1             | 1           | 1         | 1          |        | 1      |
| Occurrence and utilisation of fish                                        | 3             | 3           | 3         | 3          |        | 3      |
| Occurrence and utilisation of plants                                      | 3             | 2           | 2         | 2          |        | 2      |
| Utilisation of water for irrigation                                       | 1             | 1           | 1         | 1          |        | 1      |
| Reliance Class of river                                                   | 1             | 1           | 1         | 1          |        |        |
| Sectors 18 to 38<br>(Confluence of Wilge =S 29)                           | Loskop Dam    | Nature Rese | rve       |            |        | 2      |
| Source of potable water                                                   | 2             |             |           |            |        | 2      |
| Source of water for domestic animals, game                                | 1             |             |           |            |        | 1      |
| Occurrence and utilisation of fish                                        | 3             |             |           |            |        | 3      |
| Occurrence and utilisation of plants                                      | 2             |             |           |            |        | 2      |
| Utilisation of water for irrigation                                       | 1             |             |           |            |        | 1      |
| Reliance Class of river                                                   | 1             |             |           |            |        |        |
| MIDDLE                                                                    |               |             |           |            |        |        |
| Sectors 39 to 57 (Loskop Dam=S 39,<br>Stokkiesdraai =S 57)                | Hartman       | Pretorius   | Pieterse  |            |        | 2      |
| Source of potable water                                                   | 2             | 2           | 2         |            |        | 2      |
| Source of water for domestic animals, game                                | 1             | 1           | 1         |            |        | 1      |
| Occurrence and utilisation of fish                                        | 3             | 3           | 3         |            |        | 3      |
| Occurrence and utilisation of plants                                      | 2             | 2           | 2         |            |        | 2      |
| Utilisation of water for irrigation                                       | 4             | 4           | 4         |            |        | 4      |
| Reliance Class of river                                                   | 3             | 3           | 3         |            |        |        |
| Sectors 57 to 65 (Tiekiedraai farm= S 65)                                 | Elandskraal   | Tiekiedraai |           |            |        | 2      |
| Source of potable water                                                   | 3             | 2           |           |            |        | 2.5    |
| Source of water for domestic animals, game                                | 1             | 1           |           |            |        | 1      |
| Occurrence and utilisation of fish                                        | 3             | 3           |           |            |        | 3      |
| Occurrence and utilisation of plants                                      | 2             | 2           |           |            |        | 2      |
| Utilisation of water for irrigation                                       | 2             | 2           |           |            |        | 2      |
| Reliance Class of river                                                   | 1             | 1           |           |            |        |        |
| Sectors 65 to 88 (Rooipoort Dam =S 79,<br>Confluence of Steelpoort =S 88) | Bloublomkloof | Diamand     | Scheiding | Rostock    | Dublin | 3      |
| Source of potable water                                                   | 4             | 3           | 2         | 4          | 4      | 4      |
| Source of water for domestic animals, game                                | 1             | 1           | 1         | 1          | 1      | 1      |
| Occurrence and utilisation of fish                                        | 3             | 3           | 3         | 3          | 3      | 3      |
| Occurrence and utilisation of plants                                      | 3             | 3           | 3         | 2          | 2      | 3      |
| Utilisation of water for irrigation                                       | 2             | 2           | 2         | 2          | 1      | 2      |
| Reliance Class of river                                                   | 3             | 2           | 2         | 3          |        |        |

DWAF (2001d) produced similar results for the Lower Olifants, Klein Olifants, Bronkhorstspruit, Elands, Steelpoort, Blyde and Selati (see also Dippenaar et al. 2005) Rivers. The overall results using the numeric conversion described (and medians in shaded right-hand cells in Table 5.4) are given for the whole basin in Table 5.5. Note that these are given for river sectors (kilometres), a coverage for which is not currently available.



## TABLE 5.5SUMMARY OF RELIANCE (USING EXAMPLE OF QUANTIFICATION OF RATINGS FROMTABLE 5.4 (S=SECTOR (=KM), KNP=KRUGER NATIONAL PARK).

| Zone                         | Sectors<br>(km) |                                 | Comn                |               | Reliance       | location o  | Approx.<br>location of EWR<br>sites |                   |                |
|------------------------------|-----------------|---------------------------------|---------------------|---------------|----------------|-------------|-------------------------------------|-------------------|----------------|
| OLIFANTS                     |                 |                                 |                     |               |                |             |                                     |                   |                |
|                              | S 1 to 18       | Middelkraal                     | Roodekop            | Driehoek      | Klijnkopj<br>e |             | 2                                   | IFR1              | S 18           |
| Upper                        | S 18 to 38      | Loskop Dam<br>Nature<br>Reserve |                     |               |                |             | 2                                   | IFR2              | S 34           |
|                              | S 39 to 57      | Hartman                         | Pretorius           | Pieterse      |                |             | 2                                   | IFR5              | S 43           |
| Middle                       | S 57 to 65      | Elandskraal                     | Tiekiedraai         |               |                |             | 2                                   | IFR7              | S 63           |
| midale                       | S 65 to 88      | Bloublom-<br>Kloof              | Diamand             | Scheiding     | Rostock        | Dublin      | 3                                   | IFR8              | S 78           |
| Lower Olifants<br>Weir below | S 88 to 94      | Riverside                       | Gamametsa           | Anlaagte      | The Oaks       | The<br>Elms | 3                                   |                   |                |
| Strydom Tunnel ~S            | S 94 to 112     | Oxford                          | Excellence          |               |                |             | 2.5                                 | IFR11<br>IFR13    | S 98<br>S 104  |
| KNP start ~S 112             | S 112 to<br>132 | KNP                             |                     |               |                |             | 2                                   | IFR15<br>IFR16/17 | S 113<br>S 128 |
| KLEIN OLIFANTS               |                 |                                 |                     |               |                |             |                                     |                   |                |
| Upper                        | S 1 to 9        | Vaalbank                        | Boesman-<br>laagte  |               |                |             | 2                                   | OLI-EWR1          |                |
| Lower                        | S 9 to 12       | This sector is r                | nountainous -       | no commun     | ities were     | identifie   | d                                   | IFR3              | S 12           |
| BRONKHORSTSPRUI              | T-WILGE         |                                 |                     |               |                |             |                                     |                   |                |
|                              | S 1 to 16       | Witklip                         | Spitskop            | Strehla       |                |             | 2                                   | IFR4              | S 15           |
| ELANDS                       |                 | · · ·                           | · · · ·             |               |                |             |                                     |                   |                |
| Upper                        | S 1 to 19       | Vaalbank                        | Thabak-<br>wibidu   |               |                |             | 2                                   | IFR6              | S 19           |
| Lower                        | S 19 to 27      | Matlala                         |                     |               |                |             | 2                                   |                   |                |
| STEELPOORT                   |                 |                                 |                     |               |                |             |                                     |                   |                |
|                              | S 1 to 10       | Gamalekane                      | Boschkloof          | Apiesboo<br>m | Tswetlan<br>e  |             | 3                                   | IFR9<br>IFR10     | S 3?<br>S 8?   |
| BLYDE                        |                 |                                 |                     |               |                |             |                                     |                   |                |
|                              | S 1 to 8        | Otters Dam                      | Jonkmans-<br>spruit |               |                |             | 3                                   | IFR12             | S 4            |
| SELATI                       |                 |                                 |                     |               |                |             |                                     |                   |                |
|                              | S 1 to 18       | Danie/Willie                    | Selati<br>Reserve   | Bosbok        |                |             | 2                                   | IFR14b<br>IFR14a  | S 18<br>S 5?   |



## 5.4 Dwars River Intermediate Reserve assessment

## (Stassen 2008a, b; CIC 2008)

The Dwars River Reserve assessment (Stassen 2008) was undertaken at the Intermediate level using the HFSR approach for low flows, and inspection of the measured flow at B4H009, upstream of the EWR site for freshets and floods at one site (DWA-EWR1). The study also included a rapid-level cost-benefit analysis. The main reason for the study was to support the evaluation of the water use licence application for the building of the Richmond Dam and the abstraction of surface- and ground-water. **The study generated the following data of relevance to RESILIM-O, S&EWR:** 

- Summary data that could be used for calibrating the outputs of the DRIFT assessment, including:
  - Discipline-specific PES assessments (as at 2008) for the EWR site;
  - Volume and distribution of water (EWRs) required to maintain up to three ecological conditions (PES, REC and AEC) at the site;
- Discipline-specific summaries for geomorphology, water quality, riparian vegetation, invertebrates and fish that could be used to inform the selection of DRIFT indicators;
- Lowflow stress assessments for biotic indicators at the site that could be used to inform the response curves in the DRIFT-DSS;
- A cost-benefit analysis which could inform indicators or response curves for use in the DRIFT-DSS.

### 5.4.1 Environmental water requirements

Three ecological categories were assessed (B, B/C [PES], and C). The REC was B/C. In addition, six scenarios were assessed to establish the impact of proposed new developments on the Dwars and Steelpoort Rivers. Scenario 5, a 2.5 MAR dam with a 1.91 million m<sup>3</sup> yield, was proposed as the scenario that would maintain a B/C ecological condition at the EWR site.

#### 5.4.1.1 Results

A summary of the EWRs is given in Table 5.6, with details in Appendix A.6 and flood requirement in App Table 31.

|       |                |          | nMAR.        | Runoff as      |     |     |        | EWR for REC      |                            |                     |  |
|-------|----------------|----------|--------------|----------------|-----|-----|--------|------------------|----------------------------|---------------------|--|
| Quat  | River          | Site     | 2008<br>MCM* | in 1999<br>MCM | PES | REC | % nMAR | MCM per<br>annum | % nMAR-<br>lowflow<br>only | MCM lowflow<br>only |  |
| B41H* | Dwars<br>River | DWA-EWR1 | 31.429       |                | B/C | B/C | 25.91  | 8.142            | 19.41                      | 6.099               |  |

TABLE 5.6 SUMMARY EWRS FOR DWA-EWR1 OF THE DWARS RESERVE ASSESSMENT.

 Naturalised mean annual runoff (nMAR) based on the total flow from quaternary catchment B41G and 18% of B41H. Flow record scaled from the Steelpoort River flow record as determined during the high confidence Reserve determination study for the Olifants River.

\*\* REC determined during the intermediate III Reserve determination study on the Dwars River at EWR site (S24° 50' 38.1"; E30° 05' 30.8") in quaternary catchment B41H.



#### 5.4.1.2 Characteristics of the dams in the Upper Dwars River

DWA (2008a) provided an assessment of the outlet capabilities of the dams on the Dwars / Steelpoort (Table 5.7).

- The proposed Richmond Dam, which was being evaluated by the Reserve study, had no outlet constraints.
- Der Brochen Dam<sup>13</sup> had some release constraints but was capable of releasing the required freshets.
- Inyoni<sup>14</sup> Dam had considerable constraints but did have some release capabilities.

This has relevance in terms of the decision of both the Reconciliation and the Classification studies to exclude floods from their yield modelling and evaluation of delivery of EWRs because they "*most dams do not have the ability to release freshets, and floods will spill* (see Section 5.7)". As a consequence of this decision, it is likely that only the lowflows will be included in licences, which means many river sections will not receive their required EWRs, as there would be no requirement to release freshets, even where they could be. The only freshets most reaches would receive would be what is supplied by the immediate catchment.

| TABLE 5.7 | CHARACTERISTICS OF | THE DAMS IN THE UPPER | DWARS RIVER (FROM S | STASSEN 2008A) |
|-----------|--------------------|-----------------------|---------------------|----------------|
|-----------|--------------------|-----------------------|---------------------|----------------|

| Dam                 | Incremental<br>MAR             | Gross Full<br>Supply<br>Capacity | Dead<br>Storage                | Net Full Supply<br>Capacity    | Physical constraints on outlets                                                                                                                          |
|---------------------|--------------------------------|----------------------------------|--------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | 10 <sup>6</sup> m <sup>3</sup> | 10 <sup>6</sup> m <sup>3</sup>   | 10 <sup>6</sup> m <sup>3</sup> | 10 <sup>6</sup> m <sup>3</sup> | m³/s                                                                                                                                                     |
| Richmond<br>2.5*MAR | 5.36                           | 13.50                            | 0.60                           | 12.90                          | None                                                                                                                                                     |
| Inyoni              | 0.69                           | 0.48                             | 0.03                           | 0.45                           | Only 0.02 m <sup>3</sup> /s below<br>FSC                                                                                                                 |
| Kafferskraal        | 11.39                          | 0.74                             | 0.00                           | 0.74                           | None                                                                                                                                                     |
| Der Brochen         | 0.00                           | 7.29                             | 0.05                           | 7.29                           | 0.82 m <sup>3</sup> /s below 13.06m<br>1.84 m <sup>3</sup> /s below 17.06m<br>2.28 m <sup>3</sup> /s below 20.06m<br>2.70 m <sup>3</sup> /s below 25.06m |
| Farm Dams           | 6.91                           | 0.08                             | 0.00                           | 0.08                           | None - Always spilling                                                                                                                                   |

### 5.4.2 Cost benefit analysis

A "rapid cost-benefit analysis" was undertaken as part of the Dwars Reserve determination study. This looked at the direct costs and benefits associated with the "Der Brochen Platinum Project" of Anglo Platinum and Khumama Platinum, and the associated Richmond Dam, namely:

- Financial benefits to Anglo Platinum and its stakeholders (shareholders, employees and government);
- Cost of water provisioning (construction cost of the dam and operational cost); and
- Costs of ecosystem services lost as a result of construction of the dam.

<sup>&</sup>lt;sup>13</sup> This was spelt der Bruchen in ORRS, but der Brochen appears to be the correct spelling.

<sup>&</sup>lt;sup>14</sup> The Inyoni Dam belongs to the Two Rivers mine (consortium of Impala Platinum and African Rainbow Minerals). The dam wall has been raised and a new overflow has been built. The Richmond Dam is upstream of Inyoni Dam.



#### 5.4.2.1 Results

The direct and indirect benefits (including multiplier effects) are given in Table 5.8. Ecosystem services were considered in terms of provisioning and cultural services, and the report summary provided in Table 5.9.

TABLE 5.8 THE COMBINED DIRECT AND INDIRECT BENEFITS OF THE DER BROCHEN PROJECT TO THENATIONAL ECONOMY EXPRESSED IN TERMS OF WATER USE. (FROM CIC 2008)

| COMPONENT                     | UNITS                 | DIRECT  | COMBINED WITH INDIRECT<br>(MULTIPLIER) EFFECTS |
|-------------------------------|-----------------------|---------|------------------------------------------------|
| DER BROCHEN WATER USE         | Megalitres / day      | 2.1     |                                                |
|                               | Cubic metres per year | 766 500 |                                                |
| VALUE ADDED VALUE OF<br>WATER | R mill per year       | 2 498   | 3 365                                          |
| EMPLOYMENT VALUE OF<br>WATER  | R mill per year       | 874     | 1 177                                          |

TABLE 5.9 SUMMARY OF ECONOMIC EFFECTS RESULTING FROM THE PROPOSED RICHMOND DAM IN TERMS OF DIRECT AND INDIRECT ECONOMIC EFFECTS AND AQUATIC ECOSYSTEM SERVICES. (From CIC 2008). 'Highly likely' effects have been shaded.

| BENEFITS AND COSTS                            | CATEGORY                                                           | LIKELIHOOD OF<br>EFFECT | CONSEQUENCE                                                                                                          |
|-----------------------------------------------|--------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------|
| DIRECT FINANCIAL<br>BENEFITS                  | Value added through Anglo<br>Platinum operations                   | Highly likely           | R2 498 million per year                                                                                              |
| INDIRECT FINANCIAL<br>BENEFITS                | Value added through Anglo<br>Platinum suppliers and customers      | Highly likely           | R867 million per year                                                                                                |
| SUPPORTING AND<br>REGULATING SERVICES         | Various                                                            | Unlikely                | A category B/C river is maintained                                                                                   |
| PROVISIONING<br>ECOSYSTEM SERVICES<br>(COSTS) | Food, Wood and fibre<br>Biochemical and pharmaceutical<br>products | Highly likely           | Not quantified, relevant for a small<br>portion of the Ga Mawela community,<br>Anglo Platinum possibly to compensate |
|                                               | Fresh water                                                        | Highly unlikely         | Water provisioning to towns would be increased                                                                       |
|                                               | Genetic resources                                                  | Highly unlikely         | No threatened or scarce species in the affected area                                                                 |



| CULTURAL | Cultural diversity             | Highly likely | Not quantified, relevant to the whole<br>Ga Mawela community, Anglo Platinum |  |  |
|----------|--------------------------------|---------------|------------------------------------------------------------------------------|--|--|
|          | Spiritual and religious values |               | possibly to compensate                                                       |  |  |
|          | Knowledge systems              |               |                                                                              |  |  |
|          | Educational values             |               |                                                                              |  |  |
|          | Inspiration                    |               |                                                                              |  |  |
|          | Aesthetic values               |               |                                                                              |  |  |
|          | Social relations               |               |                                                                              |  |  |
|          | Sense of place                 |               |                                                                              |  |  |
|          | Cultural heritage values       |               |                                                                              |  |  |
|          | Recreation and ecotourism      | Unlikely      | R0.00                                                                        |  |  |

Provisioning services included the provision of freshwater, the availability / collectability of wild food, fibre, and medical products, and the presence of threatened resources. None were quantified.

The dam would inundate approximately 30 hectares<sup>15</sup> of the GaMawela communities' St George's farm. However, the report concluded that although the dam and inundation might affect collection of food, wood and fibre, there was no information available regarding this use. In addition to supplying the platinum mine, the water would also supply towns in the area, but the community would not be able to access irrigation water from the dam (Business Day Live, May 17 2013). The land itself, while 'highly significant but not irreplaceable' in the Mpumalanga Biodiversity Conservation Plan, was in a poor state due to overgrazing and frequent fires, and thus threatened genetic resources would be highly unlikely to be affected. The report concluded that it was likely that the communities would need compensation for reduced provision of ecosystem services (food, fibre, and medical).

The report concluded that it was likely that the GaMawela community would need to be compensated for the loss of cultural services but that there were no recreational and tourism activities in the area, nor any future possibility of such.

## 5.5 Rio dos Elefantes assessment (Salomon 2007a-i)

The Rio dos Elefantes EWR assessment was undertaken as part of the "Massingir Dam and Smallholder Agricultural Rehabilitation" (MDSAR) project, which included rehabilitation of the Massingir Dam to improve dam safety, allow for increased irrigation downstream, and for environmental releases.

The EWR assessment (Salomon 2007a-i) was done at an Intermediate level using the HFSR approach at two sites and a social assessment of reliance on ecosystem services. Sixteen scenarios were assessed which differed in the releases made from Massingir to meet different priorities downstream.

<sup>&</sup>lt;sup>15</sup> Or 50 hectares, depending on the source.



The study generated the following data of relevance to RESILIM-O, S&EWR:

- Summary data that could be used for calibrating the outputs of the DRIFT assessment, including:
  - discipline-specific PES (as at 2007) assessments for two EWR sites;
  - volume and distribution of water (EWRs) required to maintain up to three ecological conditions (PES, REC and AEC) at the two sites.
- Discipline-specific summaries for geomorphology, water quality, riparian vegetation, invertebrates and fish that could be used to inform the selection of DRIFT indicators.
- Lowflow stress assessments for biotic indicators at two sites that could be used to inform the response curves in the DRIFT-DSS (thus far, the stress tables are unavailable to us).
- A social study that included assessments of use and dependence on natural riverine resources and that could inform DRIFT response curves.

#### 5.5.1 EWR assessment results

The HFSR method was used to develop the overall lowflow requirements (based on fish and invertebrates). For the freshets and floods each specialist motivated for particular events (as per BBM). For both sites, the critical month for the dry season was October and for the wet season, February. Both sites had a PES of C/D (Salomon 2007g) and a REC of C (however, both PES and REC are given as C in Salomon (2007a)). None of the reports provide the nMAR, but for the purposes of this review the nMAR was calculated from the Desktop Model outputs, giving MARs of 2819.0 and 7618.4 MCM respectively (see App Table 32, App Table 33). The total EWR as a % of these nMARs and the Desktop Model results was 14.90 and 14.18 respectively (App Table 32, App Table 33). These are slightly different to those provided in Salomon (2007a, as shown in Table 5.10). A summary of the EWRs is given in in Table 5.10, with details (.tab files and flood requirements) in Appendix A.7.

## TABLE 5.10 MEAN ANNUAL REQUIREMENTS AS A PERCENTAGE OF MAR AND AS MCM FOR CATEGORY C (Salomon 2007a).

| <b>C</b> 14 |          | EWR as % of MAR |                 |                  | Long term mean as % of nMAR |       |                   |       |
|-------------|----------|-----------------|-----------------|------------------|-----------------------------|-------|-------------------|-------|
| Site        | Category | Total %<br>MAR  | Maint. %<br>MAR | Drought<br>% MAR | Low Flow<br>MCM             | % MAR | Total Flow<br>MCM | % MAR |
| EWR1        | C        | 14.77           | 10.39           | 4.26             | 317.684                     | 11.34 | 444.402           | 15.87 |
| EWR2        | C        | 14.05           | 5.27            | 2.03             | 450.849                     | 5.99  | 1138.159          | 15.11 |

#### 5.5.2 Social assessment

The social assessment (Salomon 2007h) identified:

- Key stakeholders;
- Their livelihoods and natural, physical, financial, human and social assets, and the policies, institutions and processes which may affect resilience and vulnerability;
- Their relationships with the river in terms of its provision of goods and services;
- The socio-cultural importance of the goods and services to those directly dependent for their livelihoods on the health of the river; and
- The sensitivity of the relationships to changes in quantity and quality of the water in the river (e.g. Floods, flow reductions, increases in salinity).



The primary stakeholders were traditional users, who were directly dependent on the river. Secondary stakeholders who may have an influence on the relationship of the primary users to the rivers were also identified.

Scores were given to the qualitative assessments of these relationships and their importance, according to the criteria given in Table 5.11.

| TABLE 5.11 | TYPES OF IMPORTANCE THAT WERE SCORED IN THE SOCIAL ASSESSMENT |
|------------|---------------------------------------------------------------|
|            | (Salomon 2007)                                                |

| A) SOCIO-ECONOMIC IMPORTANCE                                                                 |
|----------------------------------------------------------------------------------------------|
| 1. People directly dependent on a healthy flowing river for water supplies                   |
| 2. People dependent on riparian plants for building, thatching and medicinal plants          |
| 3. People dependent on the river for subsistence fishing                                     |
| 4. People using the river for recreational purposes that requires ecologically healthy river |
| 5. People using the river water for subsistence agriculture                                  |
| B) CULTURAL/HISTORICAL VALUES                                                                |
| 1. Sacred places on the river, and religous cultural events associated with the river        |
| 2. Historical/archaeological sites on the river                                              |
| 3. Special features and beauty spots                                                         |
| 4. General aesthetic value of the river                                                      |
| 5. Sense of place of those living proximate to the river                                     |
| C) CONSERVATION ASPECTS IN A SOCIAL CONTEXT                                                  |
| 1. Potential for ecotourism                                                                  |
| 2. Present recreation, and potential for recreation                                          |

#### 5.5.2.1 Results

An example of the detailed results for two of the resource units are given in Table 5.12. Table 5.13 summarises results for all resource units.



#### TABLE 5.12 DETAILED RESULTS FOR TWO OF THE RESOURCE UNITS.

Importance of goods and services provided and sensitivity to changes in their quantity and quality (from Salomon 2007h). (i)= importance of goods & service provided,

(ii) = sensitivity to quantity / quality changes, (iii) = importance and sensitivity synthesis,

(iv) = confidence. All scores from 0 to 4.

| DETERMINANTS                                                                                                    | (i)       | (ii) | (iii)     | (iv) | COMMENTS                                |
|-----------------------------------------------------------------------------------------------------------------|-----------|------|-----------|------|-----------------------------------------|
| RU A: Elefantes River, Border to Massingir Dam                                                                  |           |      |           |      |                                         |
| A) SOCIO-ECONOMIC IMPORTANCE                                                                                    |           |      |           |      |                                         |
| 1. People directly dependent on a healthy flowing river for water supplies                                      | 2         | 3    | 2.5       | 4    | Adjacent hand-dug wells                 |
| <ol><li>People dependent on riparian plants for building, thatching and medicinal<br/>plants</li></ol>          | 3         | 4    | 3.5       | 4    |                                         |
| 3. People dependent on the river for subsistence fishing                                                        | 3         | 3    | 3         | 4    |                                         |
| <ol><li>People using the river for recreational purposes that requires ecologically<br/>healthy river</li></ol> | 0         | 2    | 1         | 4    |                                         |
| 5. People using the river water for subsistence agriculture                                                     | 0         | 0    | 0         | 4    |                                         |
| B) CULTURAL/HISTORICAL VALUES                                                                                   |           |      |           |      |                                         |
| 1. Sacred places on the river, and religous cultural events associated with the river                           | 3         | 1    | 2         | 1    | Rock formations of the gorge propitious |
| 2. Historical/archaeological sites on the river                                                                 | 2         | 1    | 1.5       | 1    |                                         |
| 3. Special features and beauty spots                                                                            | 4         | 4    | 4         | 4    |                                         |
| 4. General aesthetic value of the river                                                                         | 4         | 4    | 4         | 4    |                                         |
| 5. Sense of place of those living proximate to the river                                                        | 3         | 1    | 2         | 3    |                                         |
| C) CONSERVATION ASPECTS IN A SOCIAL CONTEXT                                                                     |           |      |           |      |                                         |
| 1. Potential for ecotourism                                                                                     | 4         | 4    | 4         | 4    |                                         |
| 2. Present recreation, and potential for recreation                                                             | 2         | 3    | 2.5       | 4    | Part of ecotourism                      |
| MEDIAN OF DETERMINANTS                                                                                          | 3         | 3    | 2.5       |      |                                         |
| ECOLOGICAL IMPORTANCE AND SENSITIVITY CATEGORY (EISC)                                                           | High      | High | High      |      |                                         |
| RU B: Massingir Dam                                                                                             |           |      |           |      |                                         |
| A) SOCIO-ECONOMIC IMPORTANCE                                                                                    |           |      |           |      |                                         |
| 1. People directly dependent on a healthy flowing river for water supplies                                      | 1         | 4    | 2.5       | 4    | Adjacent hand-dug wells                 |
| <ol><li>People dependent on riparian plants for building, thatching and medicinal<br/>plants</li></ol>          | 1         | 1    | 1         | 4    |                                         |
| 3. People dependent on the river for subsistence fishing                                                        | 4         | 3    | 3.5       | 4    |                                         |
| <ol><li>People using the river for recreational purposes that requires ecologically<br/>healthy river</li></ol> | 0         | 3    | 1.5       | 4    |                                         |
| 5. People using the river water for subsistence agriculture                                                     | 4         | 4    | 4         | 4    | Recessive agriculture                   |
| B) CULTURAL/HISTORICAL VALUES                                                                                   |           |      |           |      |                                         |
| 1. Sacred places on the river, and religous cultural events associated with the river                           | 2         | 3    | 2.5       | 1    |                                         |
| 2. Historical/archaeological sites on the river                                                                 | 2         | 2    | 2         | 2    |                                         |
| 3. Special features and beauty spots                                                                            | 4         | 3    | 3.5       | 4    |                                         |
| 4. General aesthetic value of the river                                                                         | 4         | 3    | 3.5       | 4    |                                         |
| 5. Sense of place of those living proximate to the river                                                        | 4         | 4    | 4         | 4    |                                         |
| C) CONSERVATION ASPECTS IN A SOCIAL CONTEXT                                                                     |           |      |           |      |                                         |
| 1. Potential for ecotourism                                                                                     | 4         | 4    | 4         | 4    |                                         |
| 2. Present recreation, and potential for recreation                                                             | 4         | 4    | 4         | 4    |                                         |
| MEDIAN OF DETERMINANTS                                                                                          | 4         | 3    | 3.5       |      |                                         |
| ECOLOGICAL IMPORTANCE AND SENSITIVITY CATEGORY (EISC)                                                           | Very high | High | Very high |      |                                         |



TABLE 5.13 SUMMARY OF IMPORTANCE OF GOODS AND SERVICES PROVIDED AND SENSITIVITY TO CHANGES IN THEIR QUANTITY AND QUALITY (FROM SALOMON 2007H) FOR ALL RUS.

(I)= importance of goods & service provided, (ii) = sensitivity to quantity / quality changes,(iii) = importance and sensitivity synthesis, (iv) = confidence. All scores from 0 to 4.

| RIVER REACH                                   | RU   | (1) | (11) | (11) |
|-----------------------------------------------|------|-----|------|------|
| ELEFANTES : BORDER TO MASSINGIR DAM           | RU A | 3   | 3    | 2.5  |
| ELEFANTES : MASSINGIR DAM                     | RU B | 4   | 3    | 3.5  |
| ELEFANTES : MASSINGIR TO SHINGUEDZI RIVER     | RU C | 3   | 2.5  | 2.75 |
| ELEFANTES : SHINGUEDZI RIVER TO LIMPOPO RIVER | RU D | 2   | 3    | 2.5  |
| LIMPOPO : LIMPOPO RIVER TO MACARRETANE        | RU E | 2   | 2.5  | 2.25 |
| LIMPOPO : MACARRATANE TO MEANDER STARTS       | RU F | 3   | 3    | 2.25 |
| LIMPOPO : MEANDERING TO XAI XAI               | RU G | 2   | 3    | 2.5  |
| LIMPOPO : ESTUARY                             | RU H | 1.5 | 3    | 2.25 |

## 5.5.3 Scenarios

Four main scenarios were analysed, each with four sub-scenarios:

- Scenario 1: To evaluate if the EWR can be supplied by only supplying other demand sectors in the catchment for different levels of development. Four sub-scenarios were used to represent the various levels of irrigation expansion in the catchment.
- Scenario 2: To consider the supply of hydropower. It assess whether the environmental requirement can be supplied when water is released for hydropower and irrigation. Hydropower gets precedence over irrigation supply.
- Scenario 3: Higher priority was given to irrigation supply than hydropower. The amount and level of assurance of hydropower that can be generated was assessed while the driving force is irrigation.
- Scenario 4: After evaluating the first scenario, the fourth was required, because, in most cases the EWRs were not met. This scenario therefore considers specific environmental releases.

A maximum of 5000 ha of irrigation was modelled on the Elefantes portion of the river, which suggests that the irrigation demands did not include those for the potential sugar and biofuels project at Massingir (see Section 4.1.2 4.1.2). The ProCana project and subsequent projects probably only arose after Salomon (2007i) was complete.



#### TABLE 5.14 SCENARIOS MODELLED IN SALOMON (2007I)

| SCENARIO                                | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OUTCOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCENARIO 1A                             | <ul> <li>Inflow to Massingir dam from upstream catchment on the basis of;</li> <li>No EWR releases in Elefantes Catchment</li> <li>Flag Boshielo Dam raised to 822m amsl</li> <li>In Elefantes and Limpopo catchment;</li> <li>Domestic water from Massingir dam gets highest priority</li> <li>Water release to meet Irrigation downstream of the dam</li> <li>Irrigation in Chokwe get water first from Limpopo and the remaining balance from Massingir dam</li> <li>Irrigation in Xai- Xai area abstract from Limpopo downstream of Chokwe</li> <li>5% river loss between Chokwe and Xai-Xai irrigation</li> <li>Because the flow generated by Ninham Shand already considered river losses, these losses were not separately included in Limpopo catchment upstream of Chokwe.</li> <li>No flow release for hydropower</li> <li>No EWR release in the catchment</li> <li>Irrigation and Domestic demand for the current development condition as provided by Salomon</li> <li>All irrigation demands simulated as specific demand channel</li> <li>Full supply level (FSL) of Massingir Dam 125m amsl.</li> </ul> | The failure is significant under<br>Scenario 1a and 1b. No major<br>difference was observed at EWR2.<br>Scenario 1d performs best, but in<br>Sep and Oct the supply far<br>exceeds the EWR.<br>In general, under Scenario 1 the<br>environmental requirements could<br>not be met. The dry and wet<br>month stress curve is higher than<br>the current riparian ecosystem<br>can handle<br>Thus, releasing for irrigation alone<br>cannot meet the environmental                                                                                  |
| SCENARIO 1B                             | As for 1a, but with irrigation demand that takes into account current planned level of investment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | flow requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SCENARIO 1C                             | As for 1a, but with irrigation demand that takes into<br>account current level of investment and medium<br>term potential investment as a result of improved<br>water supply assurance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SCENARIO 1D                             | Takes into account the long-term development<br>vision: Elefantes irrigation is developed to its full<br>potential irrigable area and Chokwe and Xai-Xai are<br>rehabilitated to their original equipped condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SCENARIO 2<br>AND ITS SUB-<br>SCENARIOS | <ul> <li>The same as each of the sub-scenarios under Scenario 1 modified as follows:</li> <li>Hydropower supply to generate a design capacity of 28MW electric power.</li> <li>Minimum required electric power = 25MW</li> <li>FSL of Massingir dam raised to be 125m amsl. However, because the dam also functions by attenuating peak flows during rainy season, a different initial level was used for each month in a year depending on the expected flow in that specific month</li> <li>Highest priority to hydroelectric power demand next to domestic demand.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unlike Scenario1, in this scenario<br>the irrigation demand cannot be<br>supplied 100% of the time. In all<br>of the four sub-scenarios irrigation<br>demands could only be supplied<br>about 40% of the time.<br>In few cases the flow at both EWR<br>sites under Scenario 2a failed to<br>meet the low flow requirements,<br>but in most cases it was higher<br>than the EWR.<br>The uniform flow release to meet<br>the hydropower requirement also<br>affected the seasonality by<br>reducing the variability of flow<br>from month to month. |



| SCENARIO 3<br>AND ITS SUB-<br>SCENARIOS | To test how much energy could be generated while<br>supplying irrigation requirements (i.e. letting<br>irrigation demand determine the generation of<br>hydropower). The difference between Scenario 2a<br>and Scenario 3a is the level of priority given to<br>hydropower.<br>Under Scenario 2a highest priority was given to<br>hydropower next to domestic demand (water<br>released from Massingir dam is dictated by the<br>hydropower requirement irrespective of irrigation<br>demand). Thus there is a possibility of releasing<br>water above the irrigation demand downstream.<br>Under Scenario 3a water released is mainly dictated<br>by irrigation water demand. | Scenario 3a like Scenario 1a can<br>supply the demand 100% of the<br>time without failure.<br>An energy supply comparison of<br>Scenario 2a and Scenario 3a<br>showed both scenarios did not<br>meet the energy requirement.<br>However more energy can be<br>supplied under Scenario 2a than<br>Scenario 3a. |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCENARIO 4                              | Under Scenario 1 the environmental requirements<br>could not be met. Scenario 4 was the same as<br>Scenario 1a, but with environmental flow<br>requirements at the two sites imposed into the<br>system and EWR1 having highest priority next to<br>domestic water supply.                                                                                                                                                                                                                                                                                                                                                                                                     | The requirements at EWR1 were<br>met in both the dry and wet<br>seasons.                                                                                                                                                                                                                                      |

## 5.6 Ecosystem Goods and Services (EGSA) project (DWA 2010a)

In DWA (2010a) the values of ecosystem goods and services, in relation to riverine and wetland attributes and condition, were estimated at a coarse level for the Olifants, Inkomati and Usutu/ Mhlatuze WMAs.

The main objective of the study, commissioned by DWA, was to provide information and/or an approach for the evaluation of ecosystem goods and services, in relation to riverine and wetland attributes and condition in the later Classification processes in the three WMAs. The information included spatially-explicit descriptions of aquatic ecosystem goods, services and attributes, their estimated value for significant water resources, and their relationship to ecosystem characteristics and health in the WMAs. The project explored methods to determine and extrapolate values. Changes in ecosystem services could thus be linked to changes in river and wetland attributes as a result of different scenarios.

#### The steps in the EGSA valuation process (with reference only to the Olifants WMA) were:

- 1] Delineation of the WMA using the methods established for the WRCS, i.e. nodes were established along the river to denote locations where natural conditions (e.g. ecoregion, geomorphic zones), ecosystem health (e.g. PES), degree of use and infrastructure (presence of dams), change from upstream to downstream or where information exists (EWR sites, flow gauging stations).
- 2] Quantification of physical attributes or characteristics of the rivers at each node using various sources (see Table 5.15) e.g. Google Earth, data from the field visits, input from specialists with particular knowledge of the area, from the resource use survey (see below), and EWR studies.
- 3] Rapid characterisation of 24 river and wetland sites (in terms of e.g. channel width, riparian zone width, percentage cover of different groupings of plants, etc.) was undertaken during a field visit.
- 4] Estimation of resource availability or supply using information from Steps 1, 2, and 4, and in some cases also from Step 5.
- 5] Elicitation of services and values: A resource use survey was undertaken in four villages in three quaternary catchments, by means of village head interviews and household questionnaires / interviews. These provided:
  - Descriptions (quantitative and qualitative) of aquatic resource use;
  - Perceptions of resource quality (e.g. water quality) and abundance (e.g. availability of fish);
  - Relationships between household characteristics and demand;
  - Relationships between abundance and proximity of resources (supply); and,
  - The importance of the resources in local livelihoods;



- 6] Data augmentation: The resource use survey data were augmented with other data, such as census data, and were used to establish the relationships between use and household characteristics and between use and value.
- 7] Linking of use, value and availability (demand and supply): This information could in turn be linked to ecosystem condition, and the physical attributes of the relevant river (i.e. resource availability or supply), and both could be extrapolated to similar reaches and social zones.
- 8] Estimation of regulating services such as carbon sequestration, water purification and provision of refugia.
- 9] Estimation of recreation, tourism, spiritual, aesthetic and cultural values.

A summary of the physical attributes and services identified in the study, and the data and approaches used to estimate their value is given in Table 5.15.

For each resource, an equation was developed describing the relationship between level of use, type of river and household characteristics. For example, the relationship for fish catch was:

#### Catch (kg) = 14.186 \* % traditional houses - 2.0439.

This formula could be used to estimate the total fish catch (in kg) for representative river reaches and households across the study area.

| MEASURE                                                                        | DATA SOURCE                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "RUN OF RIVER YIELD"                                                           | WSAM                                                                                                                                                                                                                                                                                                                                                                |
| CHANNEL AND RIPARIAN<br>ZONE WIDTH AND AREA                                    | EWR information, Google Earth and field visits                                                                                                                                                                                                                                                                                                                      |
| WATER QUALITY FITNESS<br>FOR DOMESTIC AND<br>RECREATIONAL USE                  | DWA gauging station records                                                                                                                                                                                                                                                                                                                                         |
| RIPARIAN AND CHANNEL<br>SEDIMENT TYPES AND<br>COVER                            | EWR information, Google Earth and specialist input (M Rountree);                                                                                                                                                                                                                                                                                                    |
| RIPARIAN VEGETATION<br>TYPE AND COVER                                          | EWR information, field visits                                                                                                                                                                                                                                                                                                                                       |
| AQUATIC VEGETATION                                                             | Field data                                                                                                                                                                                                                                                                                                                                                          |
| CRUSTACEANS<br>(E.G. PRAWNS)                                                   | Not included as insufficient information available                                                                                                                                                                                                                                                                                                                  |
| PESTS AND PATHOGENS                                                            | Resource use survey: occurrence of bilharzia or other water related diseases                                                                                                                                                                                                                                                                                        |
| FISH                                                                           | FROC (frequency of occurrence database), SAIAB distributional data, together with published flow and habitat preference data and expert knowledge: converted to abundance and biomass estimates                                                                                                                                                                     |
| WILDLIFE:                                                                      | Resource use survey: presence of hippopotamus and crocodiles                                                                                                                                                                                                                                                                                                        |
| NATURAL, BEAUTY AND<br>SUITABILITY FOR<br>RECREATION AND<br>SPIRITUAL USE WERE | Assumed to be directly related to river health, sensitivity and importance as<br>provided by PES and EIS estimates (note that details of the components of<br>PES/EIS also provide information about important attributes such as presence<br>of alien fish such as bass (reducing PES, but increasing recreational fishing<br>value, or presence of rare species); |

#### TABLE 5.15 MEASURES AND SOURCES OF INFORMATION USED IN THE EGSA STUDY (DWA 2010A).



## 5.6.1 Results

Information is available regarding the abundance of ecosystem goods (riparian vegetation, sand) per node. At a more summarised level, the values estimated per sub-WMA are provided in Table 5.16.

|               |                              | UPPER<br>OLIFANTS | MIDDLE<br>OLIFANTS | STEEL<br>POORT | LOWER<br>OLIFANTS | TOTALS |
|---------------|------------------------------|-------------------|--------------------|----------------|-------------------|--------|
| LENGTH OF RIV | ERS (KMS)                    | 1697              | 3007               | 1106           | 1890              | _      |
| PROVISIONING  | River water for domestic use | 16.5              | 232.1              | 85             | 54.5              | 388.1  |
|               | Livestock                    | 0                 | 45.1               | 10.1           | 10.7              | 65.9   |
|               | Harvested natural resources  | 11                | 28.2               | 10.2           | 17.5              | 66.9   |
|               | Total                        | 27.5              | 305.5              | 105.3          | 82.7              | 521    |
| REGULATING    | Water treatment              | 4.5               | 3.1                | 1.4            | 3.8               | 12.8   |
|               | Carbon sequestration         | 0.1               | 1                  | 0.2            | 1.4               | 2.7    |
|               | Total                        | 4.6               | 4.2                | 1.5            | 5.2               | 15.5   |
| CULTURAL      | Recreation / tourism         | 37.4              | 38.4               | 38.8           | 249.6             | 364.2  |
|               | Property                     | 0                 | 0                  | 0              | 5.7               | 5.7    |
|               | Scientific                   | 0.1               | 0.2                | 0.1            | 0.1               | 0.5    |
|               | Total                        | 37.5              | 38.5               | 38.9           | 255.4             | 370.3  |
|               | TOTAL                        | 69.5              | 348.2              | 145.7          | 343.3             | 906.7  |

## TABLE 5.16SUMMARY OF RIVER VALUES PER CATCHMENT IN R MILLIONS, INCLUDING FIRST ORDER RIVERS<br/>(FROM DWA2010A)

## 5.7 Reconciliation study (DWA 2010b, DWA 2011a-c)

The "Development of a reconciliation strategy for the Olifants River water supply system" is included here as the Classification Study made use of information from this study. For example, the updated PESs (for 11 sites from the 2001 Reserve) were used, as was the yield model developed. Given the stressed state of the Olifants River, the study investigated potential strategies ("reconciliation strategies") to ensure a "sustainable water supply" up to 2035. Available water resources, likely future water demands, and possible interventions (dam operating rules, demand management, water transfers, dam construction, waste water re-use etc.) were investigated.

<u>Note</u> that according to the study: "The rule tables that were developed for the Reserve as part of the 1999 study make provision to release small floods (called freshets) from the dams during the spawning season for fish. The existing dams do not have sufficient release capacity to release these small floods, and in most cases they can be generated downstream of the dams from the tributaries and the catchment below the dam. These small floods were therefore removed from the rule tables. Provision has therefore only been made for that portion of the Reserve that is practically implementable. This will reduce the available yield of the whole system by 157 million m<sup>3</sup>/a in order to maintain the ecological categories at their recommended levels. The full Reserve with the flood component would have reduced the available yield by 221 million m<sup>3</sup>/a." This is important when evaluating the Reconciliation and Classification results (see Section 5.4.1.2).



## 5.7.1 Results

The options for reducing water requirements and for increasing water supply considered in the reconciliation study are given in Table , together with some of the associated yield and cost information.

The study found that implementing the (lowflow) Reserve (simulated to happen in 2016 after De Hoop Dam has filled) would reduce the available yield of the whole system by 157 million  $m^3/a$ , whereas the full Reserve with floods included would reduce yield 221 million  $m^3/a$ .

| TABLE 5.17 | OPTIONS FOR REDUCING WATER REQUIREMENTS AND FOR INCREASING WATER SUPPLY (DWA |
|------------|------------------------------------------------------------------------------|
|            | 2011()                                                                       |

| 2011C)                                                                                                                        |                                |                            |                             |                            |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|-----------------------------|----------------------------|--|--|
| Options                                                                                                                       | Yield/Saving<br>(million m³/a) | Cost as NPV<br>(R million) | Capital Cost<br>(R million) | URV<br>(R/m <sup>3</sup> ) |  |  |
| Options for reducing water<br>requirements:                                                                                   |                                |                            |                             |                            |  |  |
| 1. Eliminating unlawful Irrigation use                                                                                        | 8.7                            | 12                         | not provided                | 0.12                       |  |  |
| 2. WC/WDM: Urban                                                                                                              | 20                             | 285                        | not provided                | 1.48                       |  |  |
| 3. Compulsory licensing                                                                                                       | 35                             | 32                         | not provided                | 0.07                       |  |  |
| 4. Water trading                                                                                                              | 35                             | 175                        | not provided                | 0.35                       |  |  |
| Options for increasing water supply:                                                                                          |                                |                            |                             |                            |  |  |
| 5. Removal of alien Invasive Plants                                                                                           | 15                             | not provided               | 120                         | 0.76                       |  |  |
| 6. Dam construction, adjustment:                                                                                              |                                | not provided               |                             |                            |  |  |
| New dam at Rooipoort                                                                                                          | 59                             | not provided               | 1 140                       | 2.14                       |  |  |
| Dam in Olifants Gorge:<br>Godwinton<br>Chedle                                                                                 | 100<br>100                     | not provided               | 132<br>200                  | 0.14<br>0.20               |  |  |
| Dam in Lower Olifants:<br>Epsom<br>Madrid                                                                                     | 286<br>440                     | not provided               | 4 820<br>8 800              | 1.58<br>1.71               |  |  |
| Raising of Blyderivierspoort Dam                                                                                              | 110                            | not provided               | 2 977                       | 2.99                       |  |  |
| 7. Water transfers:                                                                                                           |                                | not provided               |                             |                            |  |  |
| Transfer from East Rand (ERWAT)*                                                                                              | 38.3                           | not provided               | 1 123                       | 7.31                       |  |  |
| Transfer from Vaal Dam *                                                                                                      | 160                            | not provided               | 3 500                       | 3.60                       |  |  |
| Transfer from Crocodile (West):<br>Pienaars - Flag Boshielo Dam<br>Crocodile - Flag Boshielo Dam<br>Crocodile - Mogalakwena** | 30<br>60<br>25                 | not provided               | 1 268<br>3 926<br>3 728     | 3.82<br>6.43<br>14.51      |  |  |
| Transfer from Massingir Dam                                                                                                   | 50                             | not provided               | 2 000                       | 4.85                       |  |  |
| 8. Treat and reuse sewage effluent in mines, at Mokopane and Polokwane                                                        | 11                             |                            |                             |                            |  |  |
| <ol> <li>Desalination and transfer of<br/>seawater</li> </ol>                                                                 | 100                            | not provided               | 12 970                      | 44.45                      |  |  |
| 10. Using treated acid mine drainage (AMD) in Upper Olifants                                                                  | 21                             | not provided               | not provided                | not<br>provided            |  |  |
| 11. Development and use of groundwater                                                                                        | not provided                   | not provided               | not provided                | not<br>provided            |  |  |
| 12. Refinements to system operating rules                                                                                     | not provided                   | not provided               | not provided                | not<br>provided            |  |  |
| 13. Use of groundwater resources                                                                                              | 35                             |                            |                             |                            |  |  |

\* Excludes cost of early augmentation of the Vaal System. (LHFP2 (URV R6.14/m<sup>3</sup>))

\*\* This option could replace the currently planned ORWRDP-Phase 2B

All cost estimates based on 2010 prices.



## 5.8 Classification (WRCS) 2011-2014

The purpose of the Classification of the Olifants Basin was to determine the Management Classes for the various sub-basins (see Section 2.2.2), and the underlying configuration of ecological conditions for each reach within each sub-basin. The Classification study used the WRCS (DWAF 2007): The basin was delineated and nodes and IUAs were established for which key information such as EWRs and ecosystem services were provided, and various scenarios were modelled.

The Classification study made use of the information from the Comprehensive and Intermediate EWR assessment (Table 5.1) as a basis for the EWRs for the PESs, RECs and scenarios. EWRs were estimated for an additional nine sites, for the most part at a Rapid 3 level (Table 5.1). The additional sites were necessary in order to allow for extrapolation of EWRs to the nodes established through the WRCS. Initial EWR estimates for the new sites were obtained from the Desktop Model, translated to depths using stage-discharge relationships, examined and adjusted by the specialists. Updated hydrology from the 2009 Olifants River Water Resources development Project (ORWDP), Phase 1 and 2 (DWA, Directorate National Water Resource Planning, 2009) and the Reconciliation study was used. All sites considered are displayed in Figure 5.4.

The Classification made use of the EGSA project (DWA 2011e) as a basis for the estimation of the value of ecosystem services but expanded and adjusted these as required.

The study analysed six scenarios, which included the reconciliations strategies (Section 5.7) in terms of;

- 1] Achieving the PES or REC,
- 2] Effects on GDP and other economic measures, and
- 3] Effect on ecosystem services.

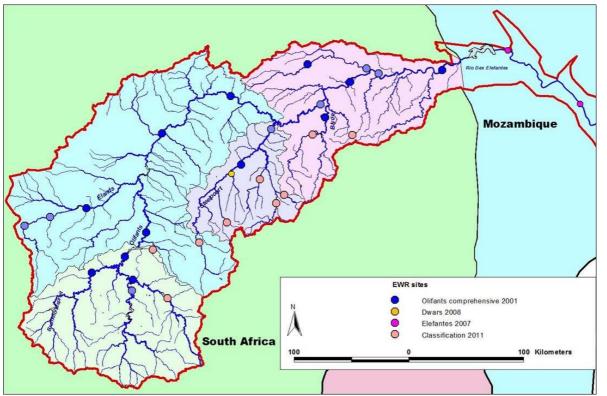



Figure 5.4 Comprehensive EWR sites (blue), the Dwars EWR (orange), the Elefantes EWR study (dark pink), and those added for Classification (pink) in 2011.



## 5.8.1 Environmental Water Requirements

The EWR requirements for all sites as provided by the Classification study are given in Table 5.18. Note that the yield modelling to see if the PES / REC and other system requirements could be met in the various scenarios, did not includes freshets and floods.

The two scenarios proposed (see Section 5.8.3) could only provide the PES, and so in Table 5.18, the lowflow requirement is given for the PES, rather than the REC. These numbers were checked as far as possible with the original Reserve figures, but not all ecological categories were available. EWRs at each node are provided in Appendix C.

#### 5.8.1.1 Results

|      | River            | Site     |             |             |              |                        |                            | EWRs                     |                              |             |
|------|------------------|----------|-------------|-------------|--------------|------------------------|----------------------------|--------------------------|------------------------------|-------------|
| Quat |                  |          | DEC         | REC<br>2011 |              |                        | REC                        |                          |                              |             |
|      |                  |          | PES<br>2011 |             | nMAR<br>2011 | Total<br>EWR %<br>nMAR | Total EWR<br>MCM<br>(calc) | Lowflow<br>EWR %<br>nMAR | Lowflow<br>EWR MCM<br>(calc) | ML*<br>m³/s |
| B11J | Olifants         | IFR1     | D           | D           | 184.52       | 18.63**                | 34.38                      | 4.70                     | 8.67                         | 0.448       |
| B12C | Klein Olifants   | OLI-EWR1 | С           | C           | 44.46        | 28.86                  | 12.83                      | 18.85                    | 8.38                         |             |
| B12E | Klein Olifants   | IFR3     | С           | С           | 81.54        | 27.00                  | 22.02                      | 12.72                    | 10.37                        | 0.229       |
| B20J | Wilge            | IFR4     | С           | В           | 175.50       | 29.90                  | 52.47                      | 12.16                    | 21.34                        | 0.918       |
| B31C | Upper Elands     | IFR6c    | С           | -           | 33.50        | 31.2                   | 10.45                      | 12.34                    | 4.13                         |             |
| B31D | Middle Elands    | IFR6b    | С           | -           | 42.30        | 23.1                   | 9.78                       | n/a                      |                              |             |
| B31G | Lower Elands     | IFR6     | D           | D           | 60.30        | 17.90                  | 10.79                      | 6.32                     | 3.81                         | 0.204       |
| B32A | Olifants         | IFR2     | С           | В           | 500.63       | 23.80                  | 119.15                     | 12.53                    | 62.73                        | 1.643       |
| B32A | Kranspoortspruit | OLI-EWR3 | В           | A/B         | 4.71         | 46.01                  | 2.17                       | 30.81                    | 1.45                         |             |
| B32D | Olifants         | IFR5     | С           | С           | 570.98       | 19.10                  | 109.06                     | 9.96                     | 56.87                        | 2.039       |
| B41B | Steelpoort       | OLI-EWR2 | С           | C           | 63.46        | 29.78                  | 18.90                      | 20.78                    | 13.19                        | 0.830       |
| B41F | Klip             | OLI-EWR4 | С           | B/C         | 5.20         | 27.49                  | 1.43                       | 17.18                    | 0.89                         |             |
| B41H | Dwars            | DWA-EWR1 | B/C         | B/C         | 31.43        | 25.91                  | 8.14                       | 19.41                    | 6.10                         | 0.190       |
| B41J | Steelpoort       | IFR9     | D           | D           | 120.17       | 15.20                  | 18.27                      | 7.97                     | 9.58                         | 0.720       |
| B41K | Steelpoort       | IFR10    | D           | D           | 336.63       | 12.10                  | 40.73                      | 7.43                     | 25.01                        | 1.579       |
| B42B | Dorpspruit       | OLI-EWR9 | C/D         | C/D         | 63.19        | 19.28                  | 12.18                      | 11.99                    | 7.58                         |             |
| B42D | Upper Spekboom   | OLI-EWR6 | С           | B/C         | 28.04        | 33.52                  | 9.40                       | 23.67                    | 6.64                         |             |
| B42G | Watervals        | OLI-EWR5 | C           | С           | 36.39        | 23.48                  | 8.54                       | 15.47                    | 5.63                         | 0.765       |
| B51G | Olifants         | IFR7     | E           | D           | 726.52       | 12.70                  | 92.27                      | 3.84                     | 27.90                        | 1.447       |
| B60H | Ohrigstad        | OLI-EWR8 | C           | C           | 65.49        | 26.35                  | 17.26                      | 16.59                    | 10.86                        | 0.238       |
| B60J | Blyde            | IFR12    | B/C         | В           | 383.70       | 34.50                  | 132.38                     | 27.90                    | 107.05                       | 3.270       |
| B71B | Olifants         | IFR8     | D           | D           | 813.04       | 15.20                  | 123.58                     | 4.30                     | 34.96                        | 1.852       |
| B71J | Olifants         | IFR11    | E           | D           | 1321.80      | 13.70                  | 181.09                     | 11.20***                 | 148.04                       | 7.424       |
| B72D | Olifants         | IFR13    | С           | С           | 1760.70      | 23.60                  | 415.53                     | 11.36                    | 200.02                       | 7.144       |
| B72H | Selati           | IFR14a   | С           | C           | 52.20        | 31.20                  | 16.29                      | 19.59                    | 10.23                        | 0.264       |
| B72K | Selati           | IFR14b   | E           | C           | 72.74        | 24.80                  | 18.04                      | 11.99                    | 8.72                         | 0.302       |
| B73A | Klaserie         | OLI-EWR7 | B/C         | В           | 25.54        | 38.95                  | 9.95                       | 27.69                    | 7.07                         |             |
| B73C | Olifants         | IFR15    | С           | -           | n/a          |                        |                            |                          |                              |             |
| B73H | Olifants         | IFR16/17 | С           | В           | 1916.90      | 21.60                  | 414.05                     | 10.75                    | 206.07                       | 7.474       |

TABLE 5.18 RECOMMENDED EWRS FROM CLASSIFICATION STUDY<sup>16</sup>.

Total EWR for REC is given, while for the maintenance lowflows only, the EWR for PES is given (as the two proposed scenarios used PES). (n/a=not available). Sorted in alphabetic quaternary catchment (quat) order.

\* Awaiting clarification as to "ML" and the numbers provided.

\*\* The original 2001 EWR was 26%, but this was reduced to 18.63 in the original DWAF 2001 signing off process.

\*\*\* This differs fairly substantially from 2001 EWR which was approximately was 6.309.

<sup>16</sup> Sites prefixed with "IFR" are from the 2001 comprehensive Reserve study, with "OLI-EWR" are additional sites from the Classification study, with "M-EWR" are those from the Elefantes intermediate study and the Dwars intermediate site is named DWA-EWR1.



### 5.8.2 Ecosystem services

#### 5.8.2.1 Results

Initial results of levels of ecosystem services provision in the Upper, Middle, Lower Olifants and Steelpoort sub-WMAs are provided in Table 5.19, with aggregate values per IUA and scenario in Table 5.21.

> TABLE 5.19 DETAILS OF ECOSYSTEM SERVICES VALUES IN THE OLIFANTS SUB-WMAS (from Prime Africa, 2011)

|              | ECOSYSTEM SERVICE     | UPPER<br>OLIFANTS | MIDDLE<br>OLIFANTS | STEELPOORT | LOWER<br>OLIFANTS | WMA | TOTAL** | TOTAL*** |
|--------------|-----------------------|-------------------|--------------------|------------|-------------------|-----|---------|----------|
|              | Water shadow price    |                   |                    |            |                   | 280 | 280     | 280.0    |
| PROVISIONING | Domestic water use*   | 16.5              | 232.1              | 85         | 54.5              |     | 388     | 388.1    |
|              | Grazing               | -                 | 31.3               | 10.1       | 12.8              |     | 72      | 54.2     |
|              | Livestock watering*   | 0                 | 45.1               | 10.1       | 10.7              |     | 66      | 65.9     |
|              | Harvested products*   | 11                | 28.2               | 10.2       | 17.5              |     | 67      | 66.9     |
|              | Total                 | 27.5              | 336.7              | 115.4      | 95.5              |     | 575     | 575.1    |
| REGULATING   | Water regulation*     | 4.5               | 3.1                | 1.4        | 3.8               |     | 13      | 12.8     |
|              | Carbon Sequestration* | 0.1               | 1                  | 0.2        | 1.4               |     | 3       | 2.7      |
|              | Total                 | 4.6               | 4.1                | 1.6        | 5.2               |     | 16      | 15.5     |
| CULTURAL     | Tourism*              | 37.4              | 38.4               | 38.8       | 249.6             |     | 364     | 364.2    |
|              | Recreation            | 5.1               | 5.3                | 5.3        | 34.3              |     | 50      | 50.0     |
|              | Aesthetic value       | 0                 | 0                  | 0          | 5.7               |     | 6       | 5.7      |
|              | Aesthetic value       |                   |                    |            |                   | 22  | 22      | 22.0     |
|              | Education*            | 0.1               | 0.2                | 0.1        | 0.1               |     | 1       | 0.5      |
|              | Total                 | 42.65             | 43.88              | 44.24      | 289.75            |     | 421     | 442.4    |
|              | Grand Total           | 74.75             | 384.68             | 161.24     | 390.45            |     | 1 319   | 1 313.0  |
|              | Each li               |                   |                    |            |                   |     |         |          |

\* The same as EGSA results. \*\*

Total as in Prime Africa (2011)

\*\* Calculated total

#### 5.8.3 Scenarios

#### 5.8.3.1 Results

The proposed management classes for the WMA are provided in Table 5.20. These would be provided for by either of the possible future scenarios 4 and 6. Details of the node / reach level configuration and EWRs for these management classes are provided in Appendix C.



## TABLE 5.20 PROPOSED MANAGEMENT CLASSES FOR THE OLIFANTS WMA (from DWA 2014)

|    | INTEGRATED UNIT OF ANALYSIS (IUA)                                       | PROPOSED MANAGEMENT<br>CLASS |
|----|-------------------------------------------------------------------------|------------------------------|
| 1  | Upper Olifants River catchment                                          |                              |
| 2  | Wilge River catchment area                                              | II                           |
| 3  | Selons River area including Loskop Dam                                  | II                           |
| 4  | Elands River catchment area                                             | III                          |
| 5  | Middle Olifants up to Flag Boshielo Dam                                 | III                          |
| 6  | Steelpoort River catchment                                              | III                          |
| 7  | Middle Olifants below Flag Boshielo Dam to upstream of Steelpoort River | 111                          |
| 8  | Spekboom catchment                                                      | II                           |
| 9  | Ohrigstad River catchment area                                          |                              |
| 10 | Lower Olifants                                                          | II                           |
| 11 | Ga-Selati River area                                                    | III                          |
| 12 | Lower Olifants within Kruger National Park                              | II                           |
| 13 | Blyde River catchment area                                              | Ι                            |

The overall conclusion of the Classification was that two (Scenarios 4 and 6) of the six scenarios considered could be recommended for consideration by the Minister. The two scenarios are identical except from the fact that one (Scenario 6) requires that additional water be made available through the treatment of mine effluents that are then released into the Upper Olifants River. According to DWA (2012a), these flows could increase the ecological categories at IFR5 and IFR7, provided the treatment is successful.

Both Scenario 4 and 6 meet the EWR to maintain the 2010/2011 PES (apart from where PES is below D, in which case a D was applied instead). The scenarios that met the requirements for REC were considered too expensive and /or unrealistic to implement. However, even under Scenario 4 and 6, not all flow requirements could be met at all times, particularly at IFR4 (Wilge River) and IFR16/17 (Olifants in Kruger National Park):

- EWR4: The best ecological category that could be achieved was a D (PES 1999= B, PES 2010= C, REC = B);
- EWR16/17: The best ecological category that could be achieved was a B/C, (PES 1999= B, PES 2010= C, REC = B).

Under both Scenario 4 and 6, ecosystem service benefits and contribution to GDP were estimated to increase from current levels. Overall results for the WMA are shown in Figure 5.5. Note that the cost of yield augmentation in both scenarios is expected to be reflected in the price of water.



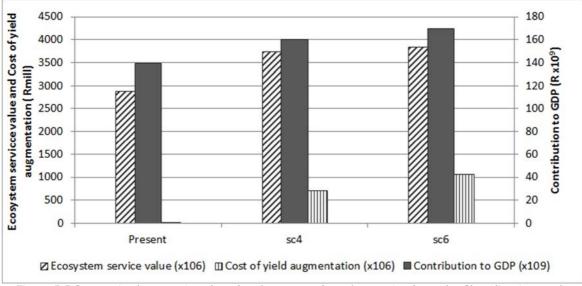



Figure 5.5 Summarised economic values for the two preferred scenarios from the Classification study. (from DWA, 2012a)

## TABLE 5.21 DISTRIBUTION OF CHANGES IN ECOSYSTEM SERVICES PER IUA AND SCENARIO, AND INECOSYSTEM SERVICES ADJUSTED GDP IN R MILLION PER YEAR (FROM DWA, 2012A)

|                                   | CHANGE IN ECO | DSYSTEM SERVICES | ECOSYSTEM-SERVICES ADJUSTED GDP |           |  |
|-----------------------------------|---------------|------------------|---------------------------------|-----------|--|
| IUA                               | Scenario4     | Scenario6        | Scenario4                       | Scenario6 |  |
| IUA1                              | 70            | 79               | 10652                           | 10596     |  |
| IUA2                              | 25            | 28               | 4110                            | 4088      |  |
| IUA3                              | 61            | 70               | 1104                            | 1098      |  |
| IUA4                              | 78            | 89               | 1956                            | 1946      |  |
| IUA5                              | 127           | 144              | 2553                            | 2540      |  |
| IUA6                              | 80            | 91               | 718                             | 715       |  |
| IUA7                              | 83            | 95               | 2343                            | 2331      |  |
| IUA8                              | 38            | 44               | 591                             | 588       |  |
| IUA9                              | 27            | 31               | 482                             | 480       |  |
| IUA10                             | 77            | 87               | 283                             | 281       |  |
| IUA11                             | 37            | 43               | 2302                            | 2289      |  |
| IUA12                             | 112           | 127              | 947                             | 942       |  |
| IUA13                             | 25            | 28               | 307                             | 306       |  |
| "POLOKWANE<br>ZONE" <sup>17</sup> |               |                  | 2644                            | 2630      |  |

<sup>&</sup>lt;sup>17</sup> No definition for this zone nor any reason for its creation could be found in the documentation sourced for this review.



## 5.9 Overall summaries

The natural MAR (nMAR) and the PES from the time of the study (or from the 1999 desktop study and the 2011 PES update where unavailable) are provided for each of the EWR sites in the Olifants Basin (Table 5.18). The REC and the associated EWRs are also provided. The location of the sites is given in Figure 4.1.

## Note:

#### As per current Reserve template formats, these percentages EXCLUDE the volume of water contained in floods with a return period of 2 years or greater, which can represent up to 40% nMAR.

The EWRs range extensively across sites: 22 to 39 % nMAR to maintain a B-category river, 19 to 31 % nMAR to maintain a C-category river, and 12 to 19% nMAR to maintain a D-category river (Figure 5.6). The three highest EWRs, in terms of %vMAR, are:

- For the Kranspoortspruit (46%; A/B-category from Classification);
- The Klaserie (39%; B-category from Classification);
- The Blyde (35%; B-category from Classification).

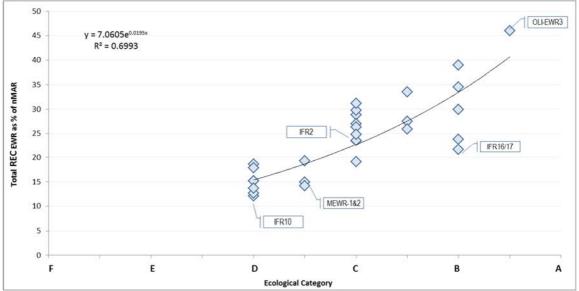



Figure 5.6 Relationship between the recommended Ecological Category and the EWR as a percentage of natural MAR, for the Olifants / Elefantes Reserves.

The relative percentages of nMAR across the basin help to identify the reaches that are important for maintaining condition in downstream sections. For example, the Klaserie River's confluence with the mainstem Olifants River is just upstream of where the Olifants River enters the Kruger National Park, and presumably the Klaserie River is an important contributor to the flow through the park and into Mozambique. The Blyde River is important for maintaining the condition of the Lower Olifants River both in terms of it contribution to total flow but also as a refuge and reseeding area.



## TABLE 5.22 EWRS FOR THE DRIEST MONTH FROM THE OLIFANTS BASIN (DWAF 2001A-C).

| ZONE   | RIVER          | SITE     | MONTH | EC  | RECOMMENDED<br>MCM | NMAR OF<br>DRIEST<br>MONTH | % OF NMAR<br>OF DRIEST<br>MONTH | TOTAL EWR<br>AS % OF<br>TOTAL NMAR |
|--------|----------------|----------|-------|-----|--------------------|----------------------------|---------------------------------|------------------------------------|
| UPPER  | Olifants       | IFR1     | Sep   | С   | 0.540              | -                          | -                               | 26.00                              |
|        | Olifants       | IFR2     | Sep   | В   | 2.460              | Monthly natu               | ral flow not                    | 23.77                              |
|        | Klein Olifants | IFR3     | Sep   | С   | 0.470              | availa                     | 27.01                           |                                    |
|        | Wilge          | IFR4     | Sep   | В   | 1.300              |                            |                                 | 29.94                              |
| MIDDLE | Olifants       | IFR5     | Sep   | С   | 3.630              | 11.07                      | 32.81                           | 24.65                              |
|        | Elands         | IFR6     | Sep   | D   | 0.181              | 1.38                       | 13.15                           | 17.86                              |
|        | Elands         | IFR6b    | Sep   | С   | 0.171              | 0.67                       | 25.56                           | 23.11                              |
|        | Elands         | IFR6c    | Sep   | В   | 0.120              | 0.46                       | 26.03                           | 31.19                              |
|        | Olifants       | IFR7     | Sep   | D   | 1.750              | 14.61                      | 11.98                           | 12.68                              |
|        | Olifants       | IFR8     | Sep   | D   | 1.814              | 15.28                      | 19.77                           | 15.22                              |
| LOWER  | Steelpoort     | IFR9     | Sep   | D   | 0.674              | 2.45                       | 27.47                           | 15.17                              |
|        | Steelpoort     | IFR10    | Sep   | D   | 1.555              | 6.59                       | 23.61                           | 12.10                              |
|        | Olifants       | IFR11    | Sep   | D   | 3.240              | 18.51                      | 17.51                           | 13.70                              |
|        | Blyde          | IFR12    | Oct   | В   | 5.625              | 12.11                      | 46.45                           | 34.49                              |
|        | Olifants       | IFR 13   | Sep   | В   | 20.740             | 39.38                      | 52.67                           | 23.57                              |
|        | Selati         | IFR14a   | Nov   | С   | 0.337              | 1.17                       | 28.83                           | 17.12                              |
|        | Selati         | IFR14b   | Nov   | D   | 0.259              | n/a                        |                                 | 24.82                              |
|        | Olifants       | IFR15    | n/a   |     |                    |                            |                                 | -                                  |
|        | Olifants       | IFR16/17 | Sep   | В   | 18.140             | 41.80                      | 43.40                           | 21.63                              |
| LOWER  | Dwars          | DWA-EWR1 | Sep   | B/C | 0.280              | 0.6334                     | 44.21                           | 25.92                              |
| MOZAM- | Elefantes      | M-EWR-1  | Sep   | С   | 19.107             | 57.30                      | 33.35                           | 14.90                              |
| BIQUE  | Limpopo        | M-EWR-2  | Sep   | С   | 21.724             | 93.54                      | 23.22                           | 14.18                              |



#### TABLE 5.23 EWRS FOR THE DRIEST MONTH FROM ASSESSMENTS DONE IN SOUTHERN AND EASTERN AFRICA (from King and Brown 2013).

| RIVER                          | CONDITION | NATURAL | MONTH      | EFLOW | UNITS             | % NATURAL<br>MONTHLY | REFERENCE          |
|--------------------------------|-----------|---------|------------|-------|-------------------|----------------------|--------------------|
| OKAVANGO                       | В         | 114     | Dry season | 101   | мсм               | 88.59                | King and           |
| (ANGOLA, NAMIBIA,<br>BOTSWANA) | С         | 114     | Dry season | 93    | мсм               | 81.57                | Brown. (2009)      |
|                                | D         | 114     | Dry season | 21    | мсм               | 18.42                | -                  |
|                                | В         | 35      | Dry season | 20    | мсм               | 57.14                | -                  |
|                                | С         | 35      | Dry season | 15    | мсм               | 42.85                | -                  |
|                                | С         | 35      | Dry season | 19    | мсм               | 54.28                | -                  |
|                                | В         | 114     | Dry season | 101   | МСМ               | 88.59                | -                  |
|                                | D         | 114     | Dry season | 21    | мсм               | 18.42                | -                  |
| RUAHA (TANZANIA)               | C/D       | 10.8    | November   | 1.87  | m <sup>3</sup> /s | 17.31                | WWF (2010)         |
| ELEPHANTES                     | С         | 21.89   | September  | 7.3   | m <sup>3</sup> /s | 33.34                | Weiler (2007)      |
| (MOZAMBIQUE)                   | С         | 35.71   | September  | 8.3   | m <sup>3</sup> /s | 23.24                | -                  |
| WAMI (TANZANIA)                | В         | 4.2     | October    | 4.3   | m <sup>3</sup> /s | 102.38               | Sarmett and        |
|                                | В         | 15      | October    | 10    | m³/s              | 66.66                | Anderson<br>(2008) |
|                                | В         | 13.3    | October    | 13.3  | m³/s              | 100.00               | -                  |
|                                | В         | 13.9    | September  | 6.6   | m³/s              | 47.48                | -                  |

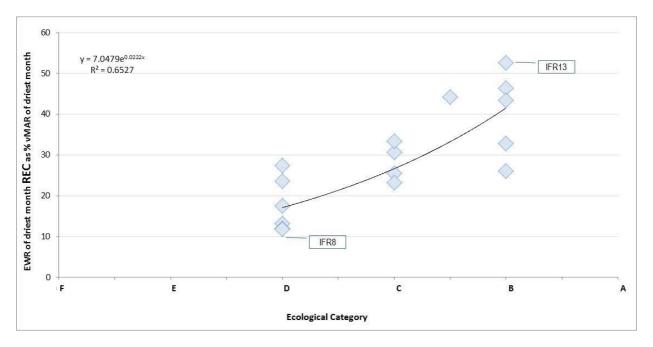



Figure 5.7 Lowflow for the lowest flow month as a percentage of naturalized monthly flow the lowest flow month (for Olifants sites in Table 5.22)



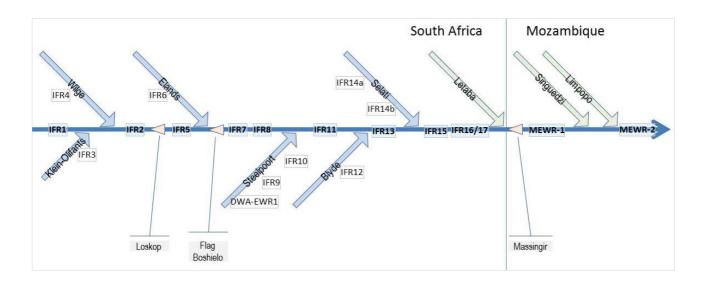



Figure 5.8 Mainstem flow (MCM) for the Olifants and Elefantes, together with schematic of the river with main tributaries and EWR sites.

# 5.10 Reports that will be used to generate the information listed in Table 1.2

Table 5.24 lists the data requirements presented in Table 1.2, and indicates which (if any) of the existing studies could potentially be used to provide each set of data. Table 5.24 also list whether or not the RESILIM-O, S&EWR team have the reports or information/data in hand.



#### TABLE 5.24 SOURCES OF INFORMATION FOR THE POPULATION AND CALIBRATION OF THE DRIFT-DSS

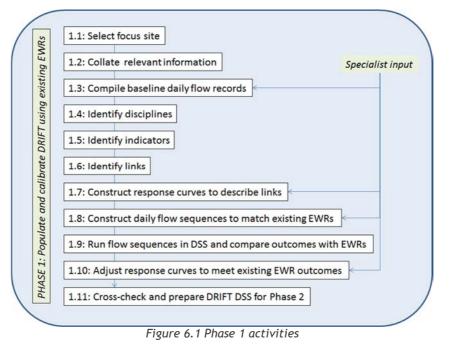
| INFORMATION REQUIRED                                                                                                  | SOURCE                                            | IN HAND? |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------|
| DELINEATION, SHOWING SIMILARLY BETWEEN                                                                                | DWAF (2001a-c) Reserve reports                    | Yes      |
| SITES IN TERMS OF HYDROLOGY, WATER<br>QUALITY, HABITAT AND BIOTA.                                                     | DWA (2010b, 2011a-c) reconciliation study reports | Yes      |
|                                                                                                                       | DWAF (2001a-c) Reserve reports                    | No       |
| EXISTING STUDY(IES)                                                                                                   | Salomon (2007a-i) Elefantes EWR reports           | No       |
|                                                                                                                       | Stassen (2008a,b) Dwars Reserve reports           | No       |
|                                                                                                                       | DWAF (2001a-c) Reserve reports                    | Yes      |
| CONDITION AS A PERCENTAGE OF NATURAL<br>ANNUAL AND/OR MONTHLY VOLUME                                                  | Salomon (2007a) Elefantes EWR reports             | Yes      |
|                                                                                                                       | Stassen (2008a) Dwars Reserve reports             | Yes      |
| ESTIMATES OF EXTENT OF CHANGE IN INDICATORS                                                                           | RQO project                                       | No       |
| LINKED TO PERCENTAGE OF NATURAL ANNUAL<br>AND/OR MONTHLY VOLUME                                                       | River Health Programme                            | No       |
| DISTRIBUTIONAL/COMMUNITY DATA FOR                                                                                     | DWAF (2001a-c) Reserve reports                    | Yes      |
| VEGETATION, FISH, INVERTEBRATES                                                                                       | Desktop PES Update (2014b)                        | Yes      |
| LIFE HISTORY DATA FOR VEGETATION, FISH,                                                                               | DWAF (2001a-c) specialist reports                 | Yes      |
| INVERTEBRATES                                                                                                         | Salomon (2007a-i) Elefantes specialist reports    | Yes      |
|                                                                                                                       | Stassen (2008) Dwars specialist reports           | Yes      |
| MONITORING DATA LINKING THE PHYSICAL AND<br>CHEMICAL NATURE OF THE RIVER ECOSYSTEM,<br>AND THE BIOTA PRESENT, TO FLOW | River Health Programme (DWAF 2001)                | Old data |
| MOTIVATIONS OF SEASONAL DEPTHS AND<br>VELOCITIES FOR MAINTAINING HABITAT BIOTA                                        | DWAF (2001a-c) Reserve and specialist reports     | Yes      |
| DELINEATION OF LATERAL ZONES IN RIPARIAN<br>VEGETATION                                                                | DWAF (2001a-c) Reserve reports                    | Yes      |
| LOWFLOW 'STRESS TABLES' FOR INDICATORS                                                                                | DWAF (2001c): IFR 12 stress tables                | Yes      |
| USED IN HFSR STUDIES                                                                                                  | Salomon (2007?) Elefantes stress tables           | No       |
|                                                                                                                       | Stassen (2008?) Dwars stress tables               | No       |
| HUMAN DEPENDENCY ON RIVER RESOURCES                                                                                   | DWAF (2001d) (Social Report)                      | Yes      |
|                                                                                                                       | DWA (2010a) EGSA report                           | Yes      |
| VALUED/RARE RIVER RESOURCES/SPECIES                                                                                   | DWA (2010a) EGSA report                           | Yes      |
| CRITERIA FOR RESOURCE USE, SUCH AS E. COLI<br>CONCENTRATIONS IN DRINKING WATER                                        | Water Quality Guidelines: SANS 241: 2011          | Yes      |
| THRESHOLDS FOR RESOURCE USE, SUCH AS<br>WATER QUALITY CRITERIA OF DRINKING WATER                                      | Water Quality Guidelines: SANS 241: 2011          | Yes      |



## 6 Approach to Activity 3

The approach to Activity 13 has two distinct phases.

## Phase 1: Population and calibration of the biophysical component of the DRIFT DSS using existing studies/reports


## Phase 2: Capture Water Resource Ecosystem Services (WATRES) and analyse scenarios.

**Phase 1** aims to populate and calibrate the DRIFT-DSS for one site using the data from existing studies/reports. This phase is not about validation or verification of the Reserve information already provided for that site, but rather about ensuring that the DRIFT-DSS generates comparable outcomes in terms of flow regimes and overall river condition, and if possible in terms of expected outcomes for individual indicators.

Phase 2 aims to augment the DRIFT-DSS with new information, generated by ecosystem services workpackage, which captures a more comprehensive suite of ecosystem services concerns than was the case in the past. In this phase the main aim is to evaluate the extent to which ecosystem services (as captured using a WatRES type of approach) can be incorporated into Reserve-type determinations in order to provide outputs that are more meaningful in terms of the uses and values that society places on riverine ecosystems. This information is not intended to 'replace' the existing Reserve information for the site.

# 6.1 Phase 1: Population and calibration of the DRIFT-DSS using existing EWRs

The activities envisaged for Phase 1 of the RESILIM-O-EWRS are presented in Figure 6.1.





## 6.1.1 Select focus site

In year 1, the RESLIM-O, S&EWR will focus on one site in the Olifants Basin. The aims of RESLIM-O, S&EWR require that this site is located where previous EWR work was undertaken. However, the focus site will be selected in conjunction with other RESILIM-O work packages, and will thus include wider considerations than those for RESLIM-O, S&EWR alone. Section 7 evaluates existing EWR sites in the basin using criteria of relevance to the RESLIM-O, S&EWR and provides a short-list of recommended sites for discussion with the other work packages.

### 6.1.2 Collate all relevant information

Existing information of relevance to the calibration of DRIFT for the focus site, including raw data, will be collated. This includes the sorts of information discussed in this report (Table 5.24) plus:

- Scientific papers on the study river or on a river(s) with similar characteristics
- DRIFT response curves for river(s) with similar characteristics
- Life history information for fauna and flora found at the site.

#### 6.1.3 Compile baseline daily flow records

The DRIFT-DSS requires daily data ( $\geq$ 30 years) that describe a baseline situation. Typically, baseline is represented by the time at which the study takes place, i.e., "present day", but it can be any time provided there are sufficient data/memories to allow for the population of the DSS based on that time.

These data will be compiled in the Hydrology work package.

#### 6.1.4 Identify disciplines

In Phase 1, only biophysical disciplines will be considered. These will conform to the disciplines included in previous EWR studies.

### 6.1.5 Identify indicators

Indicators that describe the characteristics of the focus site will be identified for each of the disciplines selected in Section 6.1.4 from the information provided for previous EWR studies. An example of this information is provided in Appendix A.

#### 6.1.6 Identify linked indicators

The information in the previous EWR studies will be interrogated to determine to which 'driver' indicators each 'response' indicator is linked. These are known as 'linked indicators'. In many cases, this is possible, particularly for links to flow indicators (see Appendix A0) for an example. However, additional linked indicators may or may not be identified based on other literature, such as life-history studies.



# 6.1.7 Construct response curves to describe links

This is the most difficult activity in Phase 1. Response curves will need to be constructed for the link between each response indicator and its driver indicators. In this regard the method used in the previous EWR studies is an important consideration. HFSR studies provide considerably more information that can assist in the construction of response curves than do BBM or Desktop studies. In order to construct the curves, it is highly likely that information from previous studies will need to be augmented with information from other sources, the scientific literature, EWR studies on similar rivers, and databases, such as FRAI (Kleynhans 2007) and Fishbase (Froese and Pauly 2014, www.fishbase.org).

## 6.1.8 Construct daily flow sequences to match existing EWRs

In order to compare the outcomes from the DRIFT-DSS to those from the EWR studies, the flow sequences used must match, as far as possible, those used in the EWR studies. For the most part, these are monthly flow sequences, so once constructed they will need to be disaggregated into daily format before being used in the DSS.

These data will be compiled by the Hydrology work package.

## 6.1.9 Run flow sequences in DSS and compare with existing EWRs

The DRIFT-DSS results for the focus site will be compared with the existing EWR in terms of:

- Ecosystem condition and annual volume, and monthly distribution of flows
- Ecosystem condition and values for individual indicators.
- Expected changes in individual biotic indicators, where possible.

Examples of the relationships between ecosystem condition and annual volume are provided in Section 5.8.

They will also be checked for coherency and consistency, which is a routine part of DRIFT-DSS calibration.

#### 6.1.10 Adjust response curves to meet existing EWR outcomes

Depending on the outcome of Step 1.9, individual response curves may require some adjustment to align with the EWR results at the focus site.

#### 6.1.11 Cross-check and prepare DRIFT-DSS for Phase 2

The outputs will be cross-checked and a user-friendly summary prepared for presentation to the ecosystem services team.



# 6.2 Phase 2: Capture WATRESs and analyse scenarios

The activities envisaged for Phase 2 of the RESILIM-O-EWRS are presented in Figure 6.2.

| PHASE2: Capture ecosystem<br>services and analyse scenarios | 2.1 Demonstrate DRIFT-DSS Stakeholder input |
|-------------------------------------------------------------|---------------------------------------------|
| in len                                                      | Stakeholder Inp                             |
| PHASE2: Capture ecosystem<br>ervices and analyse scenaric   | 2.2 With ES team: Identify indicators       |
| S S                                                         | for ecosystem services                      |
| S e                                                         |                                             |
| ě Š                                                         |                                             |
| 2 2                                                         | 2.3 With ES team: Identify links            |
| 0.0                                                         |                                             |
| 35                                                          | 2.4 Run EWR flow sequences in DSS           |
| N O                                                         |                                             |
| SE                                                          | 2.5 Run additional flow sequencees          |
| Nº S                                                        | 2.5 Kull additional now sequencees          |
| 4 5                                                         | V                                           |
| 5                                                           | 2.6 Write report                            |

Figure 6.2 Phase 2 activities

# 6.2.1 Demonstrate DRIFT-DSS to WATRES workpackage

The DRIFT-DSS populated and calibrated in Phase 1 will be demonstrated to the team members involved with the ecosystem services workpackage. The aim of this exercise is to increase understanding of the process of DRIFT, the mechanics of the DSS, the aspects of the ecosystem (indicators) for which predictions can be made based in existing information, and to facilitate an analysis of the gaps between existing information and the outputs required for RESILIM-O.

# 6.2.2 Identify additional indicators to represent WATRESs

The process of eliciting the ecosystem services will be undertaken by the ecosystem services workpackage. The SW team should have some input into this process, in order to ensure that indicators can be reasonably seamlessly included in DRIFT. Thereafter, in consultation with the ecosystem services team, the ecosystem services indicators will be finalised and entered into the DSS.

# 6.2.3 Identify linked indicators

Together with the ecosystem services team, links to biophysical (and / or other ecosystem services) indicators will be established for each ecosystem services indicator. For instance:

- A WATRES indicator such as "Sand-mining" may be linked to geomorphological indicators that describe the quantity, condition and location of sand deposits in the river, such as "Sandbars" and the amount of "Clay and mud".
- A WATRES indicator such as "Potable Water Supply" may be linked to water quality variables that describe the suitability of the water for human consumption, such as concentration of "E. Coli" or "Heavy Metals".
- A WATRES indicator such as "Fish Catch" may be linked to fish indicators that represent palatable fish that are targeted by fishermen/women, such as abundance of "Trout".



If additional biophysical indicators are required (in addition to those from existing EWR studies) are required in order to adequately manage the ecosystem services indicator links, these will be added.<sup>18</sup>

#### 6.2.4 Construct response curves

Response curves will need to be constructed for the link between each WATRES indicator and its linked indicators. These curves will be constructed by the ecosystem services team, in collaboration with the RESILIM-O, S&EWR team.

## 6.2.5 Run EWR flow sequences in DSS

The DRIFT-DSS will be re-run using the flow sequences from the EWR studies (Section 6.1.9), in order to evaluate the outcomes for the ecosystem services indicators and make adjustments if necessary.

# 6.2.6 Run flow sequences for additional scenarios in DSS

The DRIFT-DSS can then be used to explore additional scenarios related to inter alia, climate change.

<sup>&</sup>lt;sup>18</sup> If specialist input is needed to compile these curves, there may be budget implications, as the current budget only covers for specialist input on <u>existing</u> indicators.



# 7 Recommendations for RESILIM-O, S&EWR focus site(s)

This Section ranks the existing EWR sites in the basin in terms of their suitability for use in RESILIM-O, S&EWR, and provides a short-list of sites recommended for use as the focus site in Activity 3.

The focus site will be selected after consideration of the recommendations from several RESILIM workpackages.

# 7.1 Summary of information available at EWR sites

The sites and the information used are listed in Table 7.1. Only EWR sites from the Olifants Comprehensive Reserve determination studies (DWAF 2001a-c), the Dwars Intermediate Reserve determination study (Stassen 2008), and the Elefantes Intermediate Reserve determination studies are included (Salomon 2007a), as sites where Desktop and Rapid level Reserves were undertaken do not provide sufficient information for DRIFT-DSS.

Table 7.1 also indicates the 2001 sites that could no longer be accessed in 2010 (during the reconciliation study; DWA 2011b).

# 7.2 Ranking of EWR sites

Table 7.2 provides a ranking of the sites from the perspective of using the data at these sites to populate and calibrate the DRIFT-DSS. Sites where the results were extrapolated from another site were excluded from the ranking. The sites in Mozambique were also excluded from consideration as focus sites for year 1, as it is envisaged that the daily hydrology will not be available within year 1.

The criteria used to rank the remaining sites were:

- The level of Reserve assessment. Generally, comprehensive studies yield more detailed information than do intermediate studies.
- The EWR method used. The type and detail of the information provided for studies that used the HFSR method is superior to that where BBM was used. The type and detail of information provided in each is illustrated in Appendix A.
- The number of disciplines included in the study. At minimum, these should include: hydrology<sup>19</sup>, hydraulics, water quality, geomorphology, riparian vegetation, macroinvertebrates and fish.
- The confidence in the hydrological data used as these are the basis for any EWR study.

<sup>&</sup>lt;sup>19</sup> The confidence ranking for hydrology given at the time of the study is reported but the original hydrological data are not available for any of the sites.



#### TABLE 7.1 INFORMATION USED / AVAILABLE FOR ASSESSMENT OF EWRS FOR EACH SITE.

Confidence indications under each discipline are given where available (L=lowflow, H=highflow / floods, 0-very low, 5=very high), otherwise \* indicates that the information was used and is available in specialists reports.

| Sites      | Quat | Rivers         | Level           | Method           | Hydro       | Hydraulics   | Geo-<br>morphology | Water<br>Quality | Riparian<br>Vegetation | Aquatic<br>invertebrates | Fish        | Access issues<br>(2010; DWA 2011b) |
|------------|------|----------------|-----------------|------------------|-------------|--------------|--------------------|------------------|------------------------|--------------------------|-------------|------------------------------------|
| IFR1       | B11J | Olifants       | Ext from IFR2   | ввм              | L: 3        | L: 4         | L: 2               | L: 2             | L: 3                   | L: 4                     | L: 4        |                                    |
|            |      |                |                 |                  | H:3         | H:2          | H:3                | H:1              | H:2                    | H:4                      | H:4         |                                    |
| IFR2       | B32A | Olifants       | Comprehensive   | BBM              | L: 3<br>H:3 | L: 4<br>H:3  | L: 2<br>H:4        | L: 0<br>H:0      | L: 2<br>H:2            | L: 4<br>H:4              | L: 4<br>H:4 | Х                                  |
|            |      |                |                 |                  | L: 3        | L: 4         | L: 2               | L: 2             | L: 2                   | L: 3                     | L: 3        |                                    |
| IFR3       | B12E | Klein Olifants | Comprehensive   | BBM              | H:3         | H:2          | H:2                | H:2              | H:3                    | H:1                      | H:3         |                                    |
| IFR4       | B20J | Wilge          | Comprehensive   | BBM              | L: 3<br>H:3 | L: 4<br>H:2  | L: 2<br>H:4        | L: 0<br>H:0      | L: 2<br>H:4            | L: 4<br>H:3              | L: 4<br>H:4 | Х                                  |
| IFR5       | B32D | Olifants       | Comprehensive   | BBM              | L: 2<br>H:2 | L: 5<br>H:5  | L:<br>H:2          | L: 3<br>H:4      | L: 2<br>H:2            | L: 4<br>H:3              | L: 4<br>H:3 |                                    |
| IFR6       | B31G | Lower Elands   | Comprehensive   | BBM              | L: 2        | L: 4         | L: -               | L: 3             | L: 2                   | L: 4                     | L: 4        |                                    |
|            |      |                |                 |                  | H:2         | H:2          | H:4                | H:4              | H:4                    | H:2                      | H:3         |                                    |
| IFR6b      | B31D | Middle Elands  | Ext from IFR6   | BBM              | -           | -            | -                  | -                | -                      | -                        | -           |                                    |
| IFR6c      | B31C | Upper Elands   | Ext from IFR6   | BBM              | -           | -            | -                  | -                | -                      | -                        | -           |                                    |
| IFR7       | B51G | Olifants       | Comprehensive   | BBM              | L: 2<br>H:2 | L: 3<br>H:4  | L: -<br>H:4        | L: 2<br>H:2      | L: 2<br>H:4            | L: 3<br>H:2              | L: 4<br>H:3 | Х                                  |
|            |      |                |                 |                  | L: 2        | L: 4         | L: -               | L: 2             | L: -                   | L: 4                     | L: 4        |                                    |
| IFR8       | B71B | Olifants       | Comprehensive   | BBM              | H:2         | H:3          | L.<br>H:4          | H:2              | H:3                    | H:4                      | H:3         |                                    |
| IFR9       | B41J | Steelpoort     | Comprehensive   | BBM              | L: 2        | L: 4         | L: 2               | L: 1             | L: 2                   | L: 4                     | L: 4        | Х                                  |
|            |      |                |                 |                  | H:2         | H:3          | H:3                | H:1              | H:4                    | H:3                      | H:4         |                                    |
| IFR10      | B41K | Steelpoort     | Ext from IFR9   | BBM              | L: 2<br>H:2 | L: 4<br>H:3  | L: 2<br>H:2        | L: 4<br>H:4      | L: 2<br>H:4            | L: 4<br>H:3              | L: 3<br>H:3 | Х                                  |
| IFR11      | B71J | Olifants       | Ext from IFR 13 | BBM              | L: 2        | L: 4         | L: 3               | L: 4             | L: 2                   | L: 3                     | L: 3        | х                                  |
| II KI I    | D/IJ | Othants        |                 | DDIW             | H:2         | H:4          | H:3                | H:4              | H:3                    | H:2                      | H:3         | ^                                  |
| IFR12      | B60J | Blyde          | Comprehensive   | HFSR             | L: ?4       | L: ?4        | L: ?3              | L: 3             | L: ?3                  | L: 3                     | L: ?4       |                                    |
|            |      |                |                 | -                | H:?4        | H:?4         | H:?4               | H:3              | H:?4                   | H:4                      | H:?4        |                                    |
| IFR 13     | B72D | Olifants       | Comprehensive   | BBM              | L: 2<br>H:2 | L: 4<br>H:4  | L: 3<br>H:3        | L: 2<br>H:2      | L: 2<br>H:4            | L: 5<br>H:3              | L: 4<br>H:4 |                                    |
| IFR14a     | B72H | Selati         | Unknown         | BBM              | L: 2<br>H:2 | L: 2<br>H:3  | L: 2<br>H:3        | L: 1             | L: -<br>H:3            | L: 1                     | L: 3        | Х                                  |
| IFR14b     | B72K | Selati         | Ext from IFR14a | BBM              | H:Z         | П:3          | П:3                | H:1              | П:3                    | H:1                      | H:3         | Х                                  |
| IFR14D     | B/2K | Selati         | Ext from IFR14a | BBW              | -<br>L: 2   | -<br>L: 4    | -<br>L: -          | -<br>L: 3        | -<br>L: -              | -<br>L: 2                | -<br>L: 3   | X                                  |
| IFR15      |      | Olifants       | Comprehensive   |                  | H:2         | L: 4<br>H:5  | H:-                | H:3              | L: -<br>H:-            | H:1                      | H:3         |                                    |
| IFR16 / 17 | B73H | Olifants       | Comprehensive   | BBM              | L: 2        | L: 3         | L: 4*              | L: 3             | L: 1                   | L: 4                     | L: 4        |                                    |
| -          | -    |                | -               |                  | H:2         | H:5<br>*     | H:3*               | H:3              | H:3                    | H:4                      | H:4         |                                    |
| MOZ-1      | Y30C | Elefantes      | Intermediate    | L: HFSR          | L: Monthly  | *            | *                  | *                | *                      | *                        | *           |                                    |
| MOZ-2      | Y30F | Limpopo        | Intermediate    | H: BBM/<br>DRIFT | H: Daily    | *            | *                  | *                | *                      | *                        | *           |                                    |
| DWA-EWR1   | B41H | Dwars          | Comprehensive   | HFSR             | *           | * (low conf) | *                  | *                | *                      | *                        | *           | 1                                  |



| TABLE 7.2 | RANKING OF | F EWR SITES | FOR USE I | N RELIMI-O, | S&EWR. |
|-----------|------------|-------------|-----------|-------------|--------|
|-----------|------------|-------------|-----------|-------------|--------|

|              |               | A. Average | confidence | in results (fi | rom Table ) |                        |                   |      | В      | C     | D             | E                               | F      | Weighted           |
|--------------|---------------|------------|------------|----------------|-------------|------------------------|-------------------|------|--------|-------|---------------|---------------------------------|--------|--------------------|
| Sites        | Rivers        | Hydrology  | Hydraulics | Geomorph       | WQ          | Riparian<br>Vegetation | Macro-<br>inverts | Fish | Method | Level | Study<br>date | Considered<br>in DWA<br>(2011b) | Access | average<br>"A"-"F" |
| IFR12        | Blyde         | 4          | 4          | 3.5            | 3           | 3.5                    | 3.5               | 4    | 3      | 3     | 1             | 3                               | 3      | 3.42               |
| IFR16<br>/17 | Olifants      | 2          | 4          | 3.5            | 3           | 2                      | 4                 | 4    | 2      | 3     | 1             | 3                               | 3      | 3.01               |
| IFR5         | Olifants      | 2          | 5          | 2              | 3.5         | 2                      | 3.5               | 3.5  | 2      | 3     | 1             | 3                               | 3      | 2.96               |
| IFR13        | Olifants      | 2          | 4          | 3              | 2           | 3                      | 4                 | 4    | 2      | 3     | 1             | 3                               | 2      | 2.92               |
| IFR8         | Olifants      | 2          | 3.5        | 4              | 2           | 3                      | 4                 | 3.5  | 2      | 3     | 1             | 3                               | 3      | 2.92               |
| IFR6         | Elands        | 2          | 3          | 4              | 3.5         | 3                      | 3                 | 3.5  | 2      | 3     | 1             | 3                               | 3      | 2.89               |
| DWA-<br>EWR1 | Dwars         | 3.5        | 3.5        | 3              |             | 3                      | 3                 | 4    | 3      | 2     | 3             | 0                               | 3      | 2.81               |
| IFR4         | Wilge         | 3          | 3          | 3              | 0           | 3                      | 3.5               | 4    | 2      | 3     | 1             | 3                               | 3      | 2.77               |
| IFR1         | Olifants      | 3          | 3          | 2.5            | 1.5         | 2.5                    | 4                 | 4    | 2      | 1     | 1             | 3                               | 3      | 2.74               |
| IFR9         | Steelpoort    | 2          | 3.5        | 2.5            | 1           | 3                      | 3.5               | 4    | 2      | 3     | 1             | 3                               | 3      | 2.74               |
| IFR11        | Olifants      | 2          | 4          | 3              | 4           | 2.5                    | 2.5               | 3    | 2      | 1     | 1             | 0                               | 3      | 2.57               |
| IFR3         | Klein lifants | 3          | 3          | 2              | 2           | 2.5                    | 2                 | 3    | 2      | 3     | 1             | 3                               | 2      | 2.50               |
| IFR2         | Olifants      | 3          | 3.5        | 3              | 0           | 2                      | 4                 | 4    | 2      | 3     | 1             | 0                               | 0      | 2.47               |
| IFR7         | Olifants      | 2          | 3.5        | 4              | 2           | 3                      | 2.5               | 3.5  | 2      | 3     | 1             | 0                               | 0      | 2.47               |
| IFR10        | Steelpoort    | 2          | 3.5        | 2              | 4           | 3                      | 3.5               | 3    | 2      | 1     | 1             | 0                               | 0      | 2.38               |
| IFR15        | Olifants      | 2          | 4.5        |                | 3           |                        | 1.5               | 3    | 2      | 1     | 1             | 3                               | 3      | 2.19               |
| IFR14a       | Selati        | 2          | 2.5        | 2.5            | 1           | 3                      | 1                 | 3    | 2      | 1     | 1             | 0                               | 0      | 1.84               |
| IFR14b       | Selati        |            |            |                |             |                        |                   |      | 2      | 1     | 1             | 0                               | 0      | 0.22               |



- The level of confidence in each of the discipline studies. Of these, hydraulics and fish are considered the most important because:
  - Hydraulics provides the translation from discharge to ecologically relevant measures of flow, such as depth, velocity and wetted perimeter, for all the other disciplines;
  - The response for fish typically reflects an integration of the effects of flow on habitat and water quality, environmental cues (such as small floods that trigger spawning) and food supply, such as macroinvertebrates.
- The date at which studies were completed at each site. This is important as lessons learnt over the years are applied in more recent EWR assessments. In this regard, the DWAF (2001) PES, EIS and REC results for several of the sites were revisited, and partially updated, as part of the reconciliation studies in the basin. Eco-classification using updated methods (Kleynhans and Singh 2011) were redone for these sites at that time (DWA 2011b), which offers a slight benefit in terms of understanding the site response to historic changes in anthropogenic influences.

The Reserve studies used scores from 0-5 (0-very low, 5=very high) for confidence in the discipline evaluations (Table 7.1). These scores were retained in the ranking, and additional criteria were added using the same range of scores.

# 7.3 Recommended focus site(s)

The short-list of recommended sites from the perspective of RESILIM-O, S&EWR is (in order of preference; see Table 7.2

| IFR 12:    | Blyde River           |
|------------|-----------------------|
| IFR 16/17: | <b>Olifants River</b> |
| IFR 5:     | Olifants River        |
| IFR 8:     | Olifants River        |
| IFR 13:    | Olifants River        |
| IFR 6:     | Elands River          |
| DWA-EWR1:  | Dwars River.          |
|            |                       |



# 8 References

- Beilfuss, R. and Brown, C. 2010. Assessing environmental flow requirements and trade-offs for the Lower Zambezi River and Delta, Mozambique. International Journal of River Basin Management, Volume 8. Issue 2: 127 - 138.
- Brown, C.A. 2007. Mzingwane Environmental Flows Process: DRIFT Output. Unpublished Report to IUCN-ROSA. 30 pp.
- Brown, C.A. and Joubert, A. 2003. Using multicriteria analysis to develop environmental flow scenarios for rivers targeted for water resource development. *Water SA* 29(4): 365-374.
- Brown, C.A. Pemberton, C., Birkhead, A., Bok, A., Boucher, C., Dollar, E., Harding, W., Kamish, W., King, J., Paxton, B. and Ractliffe, S. 2006. In Support of Water-resources planning highlighting key management issues using DRIFT: A Case study. *Water SA* Vol. 32 No. 2. Pg 181-191.
- Brown, C. 2013. Project concept note for 'Development and implementation of basin-wide environmental flow regime" in the Orange Senqu River Basin. DRAFT. Southern Waters Ecological Research and Consulting CC
- Brown, C.A., Joubert, A.R., Beuster, J., Greyling A. and King, J.M. 2013. DRIFT: DSS software development for Integrated Flow Assessments. Final report. February 2013. Report to the Water Research Commission. WRC project No.: K5/1873. Project Leader: C.A. Brown.
- Brown, C.A., Joubert, A.R., Pemberton, C.W., Greyling A. and King, J.M. 2008. DRIFT User Manual, V2.0.:
   Biophysical module for predicting overall river condition in small to medium sized rivers with
   relatively predictable flow regimes Incorporating updates to the DRIFT database. Report to the
   Water Research Commission. WRC project No.: XX. Project Leader: C.A. Brown
- Brown, C.A., Joubert, A.R., Beuster, J. Greyling, A. and King, J.M. 2013. DRIFT: DSS software development for Integrated Flow Assessments. FINAL REPORT to the South African Water Research Commission. February 2013.
- CIC International. 2008. Rapid socio-economic assessment of the Richmond Dam. Draft Report. Submitted to: Ms Retha Stassen. Compiled by CIC International, 19 May 2008.
- DWAF/DfID. Department of Water Affairs and Forestry (DWAF) and Department for International Development (DFID). 2007. State of the aquatic ecosystems in the Olifants WMA. CONTRACT NO. WFSP/WRM/CON2006. Prepared by: Water for Africa in association with Conningarth Economists and Pegasus. January 2007.
- Department of Water Affairs and Forestry (DWAF). 2001a. Olifants River Ecological Water Requirements Assessment: Upper Olifants Comprehensive Ecological reserve (Water Quantity). DWAF Report PB 000-00-5699. Author: R. Palmer.
- Department of Water Affairs and Forestry (DWAF). 2001b. Olifants River Ecological Water Requirements Assessment: Middle Olifants Comprehensive Ecological reserve (Water Quantity). DWAF Report PB 000-00-5799. Author: R. Palmer.



Department of Water Affairs and Forestry (DWAF). 2001c. Olifants River Ecological Water Requirements Assessment: Lower Olifants Comprehensive Ecological reserve (Water Quantity). DWAF

Report PB 000-00-5899. Author: R. Palmer.

- Department of Water Affairs and Forestry (DWAF). 2001d. Olifants River Ecological Water Requirements Assessment: Social utilisation of the Olifants River. DWAF report no: PB 000-00-6099. Author: C. Joubert, Naledi Development.
- Department of Water Affairs and Forestry (DWAF). 2001e. State of the rivers report: Crocodile, Sabie-Sand and Olifants River systems. <u>http://www.dwa.gov.za/iwqs/rhp/state\_of\_rivers/</u> <u>crocsabieolif\_01\_toc.html.</u>
- Department: Water Affairs and Forestry (DWAF). 2007. Development of the Water Resource Classification System (WRCS). By: Chief Directorate: Resource Directed Measures.
- Department of Water Affairs (DWA). 2010a . The nature, distribution and value of aquatic ecosystem services of the Olifants, Inkomati and Usutu to Mhlatuze Water Management Areas. Contract Report by Anchor Environmental Consultants for Department: Water Affairs, 362pp.
- Department of Water Affairs (DWA). 2010b. Development of a <u>reconciliation</u> strategy for the Olifants River Water Supply System (WP 10197): *Yield analysis of the de Hoop and Flag Boshielo Dams*. Authors: S Mallory. Prepared by Aurecon, in association with others, for DWA. Report No.: P WMA 04/B50/00/8310/16, Nov 2010.
- Department of Water Affairs (DWA). 2011a. Development of a <u>reconciliation</u> strategy for the Olifants River Water Supply System (WP 10197): *Water requirements and water resources report*. Authors: J Beumer and S Mallory. Prepared by Aurecon, in association with others, for DWA. Report No.: P WMA 04/B50/00/8310/6, Dec 2011.
- Department of Water Affairs (DWA). 2011b. Development of a <u>reconciliation</u> strategy for the Olifants River Water Supply System (WP 10197): *Ecoclassification of the 1999 assessment at EWR sites in the Olifants River* (WMA 4). Authors: D Louw, P Kotze, A Deacon. Prepared by Aurecon, in association with others, for DWA. Report No.: P WMA 04/B50/00/8310/18, Sep 2011.
- Department of Water Affairs (DWA). 2011c. Development of a <u>reconciliation</u> strategy for the Olifants River Water Supply System: *Final Reconciliation Strategy Report* (WP 10197). Authors: Beumer, J., Van Veelen, M., Mallory, S., Timm, D., Levin, M. and Team. 2011 J Beumer, Prepared by Aurecon, in association with others, for DWA. Report No.: P WMA 04/B50/00/8310/14. December 2011.
- Department of Water Affairs (DWA). 2011d. <u>Classification</u> of significant water resources in the Olifants Water Management Area (WMA-4): *Ecological Water Requirements Report* (Appendix 1: Rapid ecological Reserve determination studies for the Olifants catchment). Report No: RDM/WMA04/00/CON/CLA/ 0511. Prepared for: Directorate Water Resource Classification. Department of Water Affairs, South Africa. Prepared by: Retha Stassen, Golder Associates Africa, Zitholele Consulting and Prime Africa. September 2011
- Department of Water Affairs (DWA). 2011e. <u>Classification</u> of significant water resources in the Olifants Water Management Area (WMA-4): Preliminary background information document: Methodology and data sources in support of the economic analyses for the Classification. Prepared by Prime Africa Consultants. December 2011.



- Department of Water Affairs (DWA). 2012a. <u>Classification</u> of significant water resources in the Olifants Water Management Area (WMA-4): *Evaluation of Scenarios Report*, Report No: RDM/WMA04/00/CON/ CLA/0212. Prepared by: Golder Associates Africa, Prime Africa and Retha Stassen.
- Department of Water Affairs (DWA). 2013. NWRS: National Water Resource Strategy: Water for an Equitable and Sustainable Future, Second Edition, June 2013.
- Department of Water Affairs (DWA). 2014a. <u>Classification</u> of significant water resources in the Olifants Water Management Area (WMA-4): *Management Classes of the Olifants Water Management Area Report*, Report No: RDM/WMA04/00/CON/CLA/0213. Prepared by: Golder Associates Africa, Prime Africa and Retha Stassen.
- Department of Water Affairs (DWA). 2014b. Assessment of the Present Ecological State (PES), Ecological Importance (EI) and Ecological Sensitivity (ES) per sub-quartenary reach in the Primary Catchment: B. Draft electronic version. Compiled by the Directorate Resource Quality Services. (Excel tables and Google (.kml) files). DRAFT.
- Dippenaar, S., N. Moilwa, S. Olorunju and Visser, A. E. 2005. *An analysis of the livelihoods of communities of the upper Selati catchment*, South Africa. Center for Scientific and Industrial Research (CSIR), Pretoria, South Africa and International Institute for Environment and Development, London, UK.
- Froese, R. and Pauly, D. Editors. 2014. FishBase. World Wide Web electronic publication. www.fishbase.org, version (02/2014).
- Grant B., Jacobsen, N.H.J. and Viljoen & Associates. 2006. Ecological Wetland Assessment Matla. Prepared by Ecosun cc for Golder Associates (Pty) Ltd for Matla Colliery (Exxaro) EMPR and Water Use License Application. April 2006. Reference from DWAF-RDM office file: WMA 4 Database\_May 2008.xls. Document not obtained.
- GWP. 2010. IWRM indicators: a GWP Perspective. Water Country Briefs Project Diagnostic Workshop, Geneva, December 2010. <u>http://www.unwater.org/downloads/WCB/GWP\_IWRM.pdf</u>.
- Hirji, R. and Davies, R. 2009. Environmental Flows in water resources policies, plans and projects: Finding and recommendations. World Bank Environment and Development Series. Washington D.C.
- Hughes, DA and Hannart, P. 2003. A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. *Journ. Hydrol.* 270 (3-4), 167-181.
- Hughes, D.A. and Louw, D. 2010. Integrating hydrology, hydraulics and ecological response into a flexible approach to the determination of environmental water requirements for rivers. *Environmental Modelling and Software* 25: 910-918
- International Water Management Institute (IWMI). 2008. A contribution to the Challenge Program Project 17: Integrated Water Resource Management for Improved Rural Livelihoods: Managing risk, mitigating drought and improving water productivity in the water scarce Limpopo Basin. Baseline Report. Olifants River Basin in South Africa.
- Joubert, C. 2001. Olifants River Ecological Water Requirements Assessment. Social Utilisation of the Olifants River. Department of Water Affairs and Forestry. Report PB 000-00-6099.



- King, J.M., R.E. Tharme and M.S. De Villiers (eds). 2000. Environmental Flow Assessments for Rivers: Manual for the Building Block Methodology. Report No. TT 131/00. Water Research Commission, Pretoria.
- King, J.M. and Brown, C.A. 2009. Environment protection and sustainable management of the Okavango River Basin: Preliminary Environmental Flows Assessment. Scenario Report: Ecological and social predictions. Project No. UNTS/RAF/010/GEF. Report No. 07/2009. Four Volumes.
- King, J.M., Brown, C.A. and Sabet, H. 2003. A scenario-based holistic approach to environmental flow assessments for regulated rivers. *Rivers Research and Applications* 19 (5-6). Pg 619-640.
- King, J., Beuster, H., Brown, C. and Joubert, A. 2014. Proactive management: the role of environmental flows in transboundary cooperative planning for the Okavango River system. Journal of Hydrological Sciences.
- King, J. and Pienaar, H. (eds) 2011. Sustainable use of South Africa's inland waters. Water Research Commission, Pretoria.
- Kleynhans, C.J. 1999. A procedure for the determination of the ecological reserve for the purposes of the national water balance model for South African Rivers. Institute for Water Quality Studies. Department of Water Affairs and Forestry, Pretoria, South Africa.
- Kleynhans, C.J. 2000. Desktop estimates of the ecological importance and sensitivity categories (EISC), default ecological management classes (DEMC), present ecological status categories (PESC), present attainable ecological management classes (present AEMC), and best attainable ecological management class (best AEMC) for quaternary catchments in South Africa. DWAF report, Institute for Water Quality Studies, Pretoria, South Africa.
- Kleynhans, C.J. 2007. Reference from DWAF-RDM office file: WMA 4 Database\_May 2008.xls. Document not obtained.
- Kleynhans, C.J. 2007. Module D: Fish Response Assessment Index. In: *River EcoClassification: Manual for EcoStatus Determination* (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry report.
- Limpopo River Awareness Kit website. <u>http://www.limpoporak.com/en/management/value+of+water/</u> <u>economic+value/mozambique.aspx</u>. Accessed Feb 2014.
- Milgroom J. 2013. Policy processes of a land grab: Enactment, context and misalignment in Massingir, Mozambique. LDPI Working Paper 34. Published by: The Land Deal Politics Initiative in collaboration with the Institute for Development Studies, Initiatives in Critical Agrarian Studies and International Institute of Social Studies, the Institute for Poverty, Land and Agrarian Studies (PLAAS) and the Polson Institute for Global Development with support from the UK Department for International Development (DfID), Atlantic Philanthropies, Inter-Church Organization for Development Cooperation (ICCO), Ford Foundation and Miserior. 26 pp.
- Mining Weekly: www.miningweekly.com. 2009. Olifants river basin collieries must join forces to control water decant - Xstrata. Article by Loni Prinsloo. 18th September 2009. Accessed online: <u>http://www.</u> <u>miningweekly.com/print-version/water-management-strategies-for-coal-mines-into-the-future-2009-09-18 on 27 Nov 2013.</u>
- Ncapayi, M. 2001. Mapochs Ecological Water Quality Reserve: B41C. Report by DWAF, Institute Water Quality Studies. Author: Ncapayi M, June 2001. DWAF, Institute Water Quality Studies 2001. Reference from DWAF-RDM office file: *WMA 4 Database\_May 2008.xls*. Document not obtained.



- Norconsult and Southern Waters (2012) Cheves Hydropower Project. Ecological Flow Management Plan. EF Assessment Report. Lima, Peru.
- Oryx Environmental. 2006. Scoping and Environmental Impact Report for a Dragline Walkway from Rietspruit Colliery to the proposed Elders Colliery near Bethal. Job No. OE 71 Dragline Walkway. For DWAF, Institute Water Quality Studies 2001. Reference from DWAF-RDM office file: *WMA 4 Database\_May 2008.xls*. Document not obtained.
- PBWO/IUCN. 2008 Final Scenario Report: Report 4: Pangani River Basin Flow Assessment, Moshi, 23pp.
- Pollard, S. and du Toit, D. 2011. The Shared River Initiative Phase I: Towards the sustainability of freshwater systems in South Africa: An exploration of factors that enable or constrain meeting the Ecological Reserve within the context of Integrated Water Resources Management in the catchments of the lowveld. Report to the Water Research Commission. Compiled by Stacey Gouws. Association for Water and Rural Development (AWARD). WRC Report No. TT 477/10.
- Prime Africa. 2011. Classification of significant water resources in the Olifants Water Management Area (WMA-4): Preliminary background information document: Methodology and data sources in support of the economic analyses for the classification of significant water resources in the Olifants Water Management Area (WMA. Prepared by: Prime Africa Consultants. 19 December 2011
- Salomon Lda. 2007a. Determination of Environmental Flow Requirements for the Elefantes River, Moçambique: *Main report*. For the Massingir Dam and Smallholder Agricultural Rehabilitation Project. Prepared by Salomon L da in association with PD Naidoo and Associates for Direcção Nacional de Águas, (DNA), Administração Regional de Águas do Sul (ARA-Sul) and Project Implementation Unit, PIMU.
- Salomon Lda. 2007g. Determination of Environmental Flow Requirements for the Elefantes River, Moçambique: *Draft EFR Report*. For the Massingir Dam and Smallholder Agricultural Rehabilitation Project. Prepared by Salomon L da in association with PD Naidoo and Associates for Direcção Nacional de Águas, (DNA), Administração Regional de Águas do Sul (ARA-Sul) and Project Implementation Unit, PIMU.
- Salomon Lda. 2007h. Determination of Environmental Flow Requirements for the Elefantes River, Moçambique: *Socio Importance Report*. For the Massingir Dam and Smallholder Agricultural Rehabilitation Project. Prepared by Salomon L da in association with PD Naidoo and Associates for Direcção Nacional de Águas, (DNA), Administração Regional de Águas do Sul (ARA-Sul) and Project Implementation Unit, PIMU.
- Salomon Lda. 2007i. Determination of Environmental Flow Requirements for the Elefantes River, Moçambique: *Scenario Report*. For the Massingir Dam and Smallholder Agricultural Rehabilitation Project. Prepared by Salomon L da in association with PD Naidoo and Associates for Direcção Nacional de Águas, (DNA), Administração Regional de Águas do Sul (ARA-Sul) and Project Implementation Unit, PIMU. August, 2007.
- Singh, A. 2007. Reference from DWAF-RDM office file: *WMA 4 Database\_May 2008.xls*. Document not obtained.
- Southern Waters. 2009. Environmental Flow Assessment. Volume 1: Main Report. ESIA for the Saboloka, Dagash and Mograt Hydropower Projects on the Nile River, Northern Sudan. Unpublished project report for SMEC and Sudanese Dams Implementation Unit. 74 pp.



- Southern Waters. 2010. Environmental Flow Assessment. Volume 1: Main Report. ESIA for the Baynes Hydropower Project on the Cunene River on the border between Angola and Namibia. Unpublished project report for ERM, and NamPower.
- Southern Waters. 2011a. Environmental Flow Assessment Volume 2: Specialist Reports (FIRST Report). ESHIA for the Riversdale Coal Barging Project Phase 2, Zambezi River, Mozambique. Unpublished project report for ERM. 198 pp.
- Southern Waters. 2011b. FINAL. Environmental Flow Assessment: Neelum/Kishenganga River, Kashmir (New Hydrology\_All scenarios). Unpublished project report for National Engineering Services Pakistan (Pvt.) Limited. 58 pp.
- Hagler-Bailey, Water Matters, Southern Waters and Beuster Clarke and Associates. 2011.Kishenganga/Neelum River Water Diversion. Environmental Assessment. Final Report. May 2011.Pakistan
- Stassen, R. 2008a. Intermediate ecological Reserve determination for the Dwars River catchment (quaternary catchments B41G and B41H), tributary of the Steelpoort River, Mpumalanga. FINAL REPORT. April, 2008. Report prepared by BKS (Pty) Ltd for DWAF.
- Stassen, R. 2008b. Intermediate ecological Reserve determination for the Dwars River catchment (quaternary catchments B41G and B41H), tributary of the Steelpoort River, Mpumalanga. APPENDIX I: Reserve Template. April, 2008. Report prepared by BKS (Pty) Ltd for DWAF.
- USAID. 2013. Resilience in the Limpopo Basin Program (RESILIM): Olifants Catchment. USAID Fact Sheet: <u>http://www.usaid.gov/documents/1860/fact-sheet-resilience-limpopo-basin-program-resilim-olifants-catchment-june-2013</u>, Accessed 05 Feb 2014.
- Water Wheel. 2010. River ecosystems: All eyes on Olifants as experts search for answers. The Water Wheel May/Jun 2010. p14-18. Accessed online on 30 Jan 2014: <u>http://www.wrc.org.za/Pages/KH\_WaterWheel.aspx?dt=4&ms=55;</u>



# Appendix A: Illustrative example for stages 1, and 4-6 of Activity 3

Please note that the example below is an illustrative example only for Steps 1.1, 1.4, 1.5 and 1.6 of the process for Activity 3 (Section 6). The other steps can only be demonstrated by populating the DSS.

# A.1 Example EWR site

IFR 13 on the lower Olifants River was selected for this illustrative example (DWAF 2001c). The advantages and disadvantages of the site as provided by specialists at the time of the EWR study (DWAF 2001c) are summarised in App Table 1.

| Discipline          | Advantages                                                                                                                                                                                                                                                                                                                                                          | Disadvantages                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydraulics          | -                                                                                                                                                                                                                                                                                                                                                                   | Complex site from hydraulics perspective, dominated<br>by rapidly varied flow over a large bedrock control<br>located across the width of the macro-channel floor.<br>Five linked cross-sections were positioned at the site<br>extending to approximately 200 m upstream and<br>downstream of the bedrock control to allow adequate<br>characterisation of the hydraulic behaviour. |
| Geomorphology       | Good hydraulic diversity<br>Some evidence of annual flood level on LB.<br>Representative for this type of reach, i.e. bedrock<br>rapids.                                                                                                                                                                                                                            | Not complimentary evidence of annual flood on RB.<br>Lot of flood damage, so system has been "re-set",<br>therefore difficult to talk about an 'ideal' condition.                                                                                                                                                                                                                    |
| Riparian vegetation | <i>Ficus &amp; Bridelia</i> present on both banks.<br>Good flood terrace present on lower transect for<br>medium / high flows.<br>Good root zone present on RB - <i>Breonardia</i> which<br>can be used to ID low flows despite poor vertical<br>sensitivity.                                                                                                       | Poor vertical sensitivity due to width of channel,<br>therefore to identify and specify level requirements<br>for low flows.<br>Main transect difficult for medium/high flows - lower<br>transect will be required for these.<br>Very highly incised channel with many old riparian<br>zones present whose requirements cannot be<br>described.                                      |
| Macroinvertebrates  | Biotope diversity high - large range of substrate<br>sizes, including sand, gravel, cobbles and boulders.<br>Sampling of cobbles possible under a range of<br>flows.<br>Highly representative of river.<br>Profile sensitive to changes in flow                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                    |
| Fish                | Variety of slow and fast habitats<br>Channel stable. Good marginal and undercut banks<br>and root matts.<br>Submerged aquatic plants present in cross-section<br>( <i>Potamogeton crispes &amp; Chara</i> spp).<br>Back waters and nursery areas present can be<br>related to present level to determine level where<br>active.<br>Habitat for a diversity of fish. | Hydraulics may be difficult.                                                                                                                                                                                                                                                                                                                                                         |

APP TABLE 1: SUMMARY FROM DWAF (2001C) SITE APPENDIX (APPENDIX A) OF ADVANTAGES AND DISADVANTAGES OF IFR 13.



**ECOLOGICAL** 

# A.2 Ecological status

IFR13 is on the Olifants River downstream of confluence with the Blyde River in quaternary catchment B72D (segment 100), and ecoregion 5.06. The closest river health program site is B7OLIF-HOEDS which is about 30km upstream, and about 2 km below the Blyde River confluence. The overall PES in in DWAF (2001c) was C, but because of the EIS given to this reach, the REC was B. The site is strongly affected by the Blyde River, which influences water temperatures, the availability of habitats and the reliability of flow. Blydepoort Dam releases also appear to cause sedimentation at this site, impacting on habitat diversity. Ecological Conditions for each discipline and overall are summarised in App Table 2.

The main reasons provided for the conditions were the altered sediment regime, upstream dams and abstraction, sediment and vegetation loss (due to land-use practices, deforestation, etc.), nutrient inputs (from agriculture, overgrazing, browsing, irrigation), TDS inputs and barriers to fish migration.

| APP TABLE 2 | SUMMARY FROM DWAF (2001C) OF ECOLOGICAL CATEGORIES FOR |
|-------------|--------------------------------------------------------|
|             | EACH DISCIPLINE FOR IFR 13.                            |

COMMENT

#### COMPONENT

|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CATEGORY |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| HYDROLOGY                     | Score: 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C/D      |
| GEOMORPHOLOGY                 | The D class reach is defined as being largely modified, with significant changes in geomorphology and in-stream habitat. Geomorphic thresholds appear to have been crossed with the river moving towards a new equilibrium. This is demonstrated by an over-widened channel with numerous sand bars and extensive chokes of large woody debris. (Modifying determinants: Extensive agriculture, riparian zone mismanagement, bridges and weirs).                                                                                                                                                                                       | D        |
| OVERALL WATER<br>QUALITY (WQ) | The improved WQ in this reach is dependent on good quality water from the Blyde<br>River. WQ conditions in the Blyde river are following a trajectory of deterioration,<br>and careful WQ management will be required in the Blyde River, and in this reach<br>of the Olifants River. No instream toxicity testing was undertaken. The<br>invertebrates, fish and WQ were all Category C, with invertebrates tending to<br>improve just downstream of the Blyde River confluence. TDS concentrations<br>measured below the Blyde River confluence were lower than upstream of the<br>confluence, especially during the low flow months | С        |
| RIPARIAN<br>VEGETATION        | Reduced cover, loss of large trees with changes in population structure and species composition. (Modifying determinants: Scouring and flooding, reduced flows and water level fluctuations, overgrazing and resulting erosion).                                                                                                                                                                                                                                                                                                                                                                                                       | C        |
| AQUATIC<br>INVERTEBRATES      | ASPT 4.98, SASS 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С        |
| FISH                          | Diversity of fish species present, several sensitive fish present; species missing from reference condition (Modifying determinants: improved water quality and quantity. Cold water pulses which are a problem for some species. Sporadic sedimentation of habitat.). RC: 29 species, PES: 24 species                                                                                                                                                                                                                                                                                                                                 | С        |
| ECOSTATUS                     | Trajectory: C (short), D/E (long)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С        |
| INSTREAM HABITAT<br>INTEGRITY | Serious bed modification expected due to upstream activities. The inflow of the Blyde River provides some initial ameliorating affect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C        |
| RIPARIAN HABITAT<br>INTEGRITY | Large impact of bank erosion due to overgrazing and flow modification expected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С        |



# A.3 Possible indicators

The site descriptions given in each specialist report provide an indication of indicators for each discipline, while comments from other specialists provide a guide for linked indicators. For example, the abundances of algae and diatom<sup>20</sup>s are important to invertebrate abundance, as they may reduce habitat availability.

# A.3.1 Flow indicators

In the BBM approach, flow was divided into components made up of the lowflow (baseflow) in the dry and wet seasons, the intra-annual floods (freshets), and the inter-annual floods. These remain useful ways of considering the biologically relevant part of the flow regime, but suffer from a number of shortcomings if they are the only considerations regarding flow patterns. For example, the average dry season lowflow component does not provide information as to whether the season will start earlier or later, or whether the season lasts longer or shorter than the natural or present day dry season.

DRIFT has a wide-ranging set of flow indicators, including some that are the equivalent, or provide alternatives, to the original BBM indicators (App Table 3). App Table 4 lists the BBM flow indicators for IFR 13, and the DRIFT equivalents/alternatives.

| Indicator                      | Units             |
|--------------------------------|-------------------|
| Mean annual runoff             | m³/s              |
| Dry season onset               | cal week          |
| Dry season relative onset      | weeks             |
| Dry season duration            | days              |
| Dry season Min 5d Q            | m <sup>3</sup> /s |
| Wet season onset               | cal week          |
| Wet season relative onset      | weeks             |
| Wet season Max 5d Q            | m³/s              |
| Flood volume                   | MCM               |
| Flood type                     | Туре              |
| Wet season duration            | days              |
| T2 recession slope             | m <sup>3</sup> /s |
| Dry season ave daily vol       | MCM /d            |
| T1 ave daily vol               | MCM /d            |
| Wet season ave daily vol       | MCM /d            |
| T2 ave daily vol               | MCM /d            |
| Dry season min instantaneous Q | m³/s              |
| Dry season max instantaneous Q | m³/s              |
| Dry season max rate of change  | m³/s/min          |
| T1 min instantaneous Q         | m³/s              |
| T1 max instantaneous Q         | m³/s              |
| T1 max rate of change          | m³/s/min          |
| Wet season min instantaneous Q | m³/s              |
| Wet season max instantaneous Q | m³/s              |
| Wet season max rate of change  | m³/s/min          |
| T2 min instantaneous Q         | m³/s              |
| T2 max instantaneous Q         | m³/s              |
| T2 max rate of change          | m³/s/min          |
| Dry season Min 5d Velocity     | m/s               |
| Dry season Min 5d WetPerim     | m                 |
| Dry season Min 5d Depth        | m                 |

APP TABLE 3: FULL LIST OF DRIFT FLOW INDICATORS

| Indicator                    | Units             |
|------------------------------|-------------------|
| Flood season Max 5d Velocity | m/s               |
| Flood season Max 5d WetPerim | m                 |
| Flood season Max 5d Depth    | m                 |
| Flood season Min 5d Velocity | m/s               |
| Flood season Min 5d WetPerim | m                 |
| Flood season Min 5d Depth    | m                 |
| Dry within day range         | m³/s              |
| T1 within day range          | m <sup>3</sup> /s |
| Wet within day range         | m <sup>3</sup> /s |
| T2 within day range          | m³/s              |
| Dry Class1                   | Number            |
| Dry Class2                   | Number            |
| Dry Class3                   | Number            |
| Dry Class4                   | Number            |
| Wet Class1                   | Number            |
| Wet Class2                   | Number            |
| Wet Class3                   | Number            |
| Wet Class4                   | Number            |
| T1 Class1                    | Number            |
| T1 Class2                    | Number            |
| T1 Class3                    | Number            |
| T1 Class4                    | Number            |
| T2 Class1                    | Number            |
| T2 Class2                    | Number            |
| T2 Class3                    | Number            |
| T2 Class4                    | Number            |
| 1:2 Class5                   | Number            |
| 1:5 Class6                   | Number            |
| 1:10 Class7                  | Number            |
| 1:20 Class8                  | Number            |
|                              |                   |

<sup>&</sup>lt;sup>20</sup> For the purposes of this example, algae and diatoms have been added to water quality (rather than adding a new discipline).



| Flow                | BBM flow              | DRIFT flow indicators                             |                                                                                                  |                                                                       |  |  |  |
|---------------------|-----------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| Category            | indicator             | Primary                                           | Alternatives                                                                                     | Additional                                                            |  |  |  |
| Low flow / baseflow | Lowflow-dry<br>season | Dry season: minimum<br>5 day average<br>discharge | <ul> <li>Dry season average<br/>daily volume</li> </ul>                                          | <ul> <li>Dry season<br/>duration</li> <li>Dry season onset</li> </ul> |  |  |  |
|                     | Lowflow-wet<br>season | -                                                 | <ul> <li>Wet season flood<br/>volume</li> <li>Wet season<br/>average daily<br/>volume</li> </ul> | <ul> <li>Wet season<br/>duration</li> <li>Wet season onset</li> </ul> |  |  |  |
| Intra-annual floods | Freshet-spring        | T1 season: minimum<br>5 day average<br>discharge  | <ul> <li>Numbers of intra-<br/>annual floods of<br/>various classes.</li> </ul>                  |                                                                       |  |  |  |
|                     | Freshet-<br>summer    | T1 season: minimum<br>5 day average<br>discharge  | <ul> <li>Numbers of intra-<br/>annual floods of<br/>various classes.</li> </ul>                  |                                                                       |  |  |  |
|                     | Freshet-autumn        | T2 season: minimum<br>5 day average<br>discharge  | <ul> <li>Numbers of intra-<br/>annual floods of<br/>various classes.</li> </ul>                  |                                                                       |  |  |  |
| Inter-annual floods | Floods-wet<br>season  | Wet season:<br>maximum 5 day<br>average discharge | <ul> <li>Numbers of inter-<br/>annual floods of<br/>various classes.</li> </ul>                  |                                                                       |  |  |  |

APP TABLE 4: BBM FLOW INDICATORS FOR IFR 13, AND THE DRIFT EQUIVALENTS/ALTERNATIVES

# A.3.2 Biotic indicators

The BBM study did not specify indicators, but particular features of the ecosystem are discussed and mentioned in the motivations for specific flows. These discussion can be used to identify indicators (App Table 5).

| APP TABLE 5: | INDICATORS EXTRACTED | FROM DWAF (2001C) |
|--------------|----------------------|-------------------|
|              |                      | ()                |

| DISCIPLINE AND<br>INDICATORS    | DESCRIPTION / REASONS                                                                                                                                                                      | SPECIES |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| GEOMORPHOLOGY                   |                                                                                                                                                                                            | -       |
| CHANNEL WIDTH                   | A basic indicator of geomorphic change                                                                                                                                                     | n/a     |
| EMBEDDEDNESS /<br>SEDIMENTATION | Important for invertebrate habitat availability                                                                                                                                            | n/a     |
| FLOOD TERRACE<br>CONDITION      | Important for maintenance of the flood terrace / mature tree zone for riparian vegetation                                                                                                  | n/a     |
| AREA OF<br>BACKWATERS?          | Important for a number of fish species                                                                                                                                                     | n/a     |
| BIOTOPE DIVERSITY ?             | Important for invertebrate and fish habitat availability (site includes<br>sand bars, cobble, bedrock, undercutting, marginal vegetation,<br>backwaters, riffles and pools)                | n/a     |
| WATER QUALITY                   |                                                                                                                                                                                            |         |
| TDS / SALINITY                  | TDS concentrations measured affected by the relative contribution of Blyde and Olifants River flows.                                                                                       | n/a     |
| FILAMENTOUS LGAE<br>AND DIATOMS | Filamentous algae and diatoms affect invertebrate habitat availability                                                                                                                     | n/a     |
| NUTRIENTS                       | Nutrients were moderately high, but were not mentioned as IFR motivations                                                                                                                  | n/a     |
| HEAVY METALS                    | Concerns have been expressed about potential heavy metal pollution<br>from the Palaborwa mining complex, but measurements were not<br>made and these were not mentioned as IFR motivations | n/a     |



| VEGETATION                                         |                                                                                                                                                                                                                                                           |                                                                                                                                                             |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MARGINAL ZONE                                      | An important habitat for invertebrate and fish species                                                                                                                                                                                                    | n/a                                                                                                                                                         |
| MATURE TREE AND<br>FLOOD TERRACE ZONE              | Stands of mature trees occur on the channel margins and flood terrace. Changes in flow and sediment have caused undercutting                                                                                                                              | Ficus sycomorus,<br>Breonadia salicina                                                                                                                      |
| AQUATIC<br>INVERTEBRATES                           |                                                                                                                                                                                                                                                           |                                                                                                                                                             |
| MAYFLY DIVERSITY                                   | These taxa provide useful indicators for monitoring IFR recommendations at this site                                                                                                                                                                      | Flat headed<br>mayflies<br>(Afronurus sp.),<br>large carnivorous<br>mayfly<br>Centroptiloides<br>bifasciata                                                 |
| CRUSTACEAN<br>ABUNDANCE                            | No crustacea were recorded at this site, but should be present                                                                                                                                                                                            | Not provided                                                                                                                                                |
| OLIGOCHAETE<br>ABUNDANCE                           | No crustacea were recorded at this site, but should be present                                                                                                                                                                                            | Not provided                                                                                                                                                |
| MOLLUSC ABUNDANCE                                  | No crustacea were recorded at this site, but should be present                                                                                                                                                                                            | Not provided                                                                                                                                                |
| SIMULIUM DAMNOSUM<br>ABUNDANCE                     | The blackfly is a pest species and has been recorded here                                                                                                                                                                                                 | Simulium<br>damnosum                                                                                                                                        |
| FISH                                               |                                                                                                                                                                                                                                                           |                                                                                                                                                             |
| DEEP, POOL OR STILL<br>WATER SPECIES               | Some deeper habitats and pools are available in this Fish Habitat<br>Segment and are important to create some cover, in terms of depth<br>and/or other structures, to sustain adult populations of the larger<br>fish and those preferring pool habitats. | Labeo<br>molybdinus,<br>Labeo ruddi,<br>Oreochromis<br>mossambicus,<br>Schilbe<br>intermedius,<br>Clarias gariepinus                                        |
| RIFFLE DWELLING AND<br>BREEDING SPECIES            | Some species are dependent on riffle habitat (therefore on<br>permanent flow)<br>Others depend on riffles for spawning and juvenile development                                                                                                           | Opsaridium<br>peringueyi,<br>Chiloglanis pretoriae,<br>Labeobarbus<br>marequensis, Labeo<br>cylindricus, Labeo<br>rosae                                     |
| MARGINAL ZONE AND<br>BACKWATER<br>DWELLING SPECIES | Marginal zone habitats serve as refuge areas and spawning grounds<br>for smaller species and backwaters act as nurseries for juveniles.<br>Marginal zone and undercut banks provide cover for certain species                                             | Micralestes acutidens<br>Barbus paludinosus,<br>Barbus trimaculatus,<br>Barbus unitaeniatus,<br>Barbus annectens,<br>Barbus viviparous,<br>Tilapia rendalli |



# A.4 Linked indicators

The motivations given for specific flows provide guidance on links between the other biophysical indicators and the flow indicators (App Table 6) and in some cases also the links to other biophysical indicators. However, many of the links will need to be established using relevant specialists.

APP TABLE 6: MOTIVATIONS GIVEN IN DWAF (2001C) FOR EACH FLOW COMPONENT AT IFR13, REARRANGED PER DISCIPLINE, TOGETHER WITH THE SPECIFIC RECOMMENDED FLOWS.

| BBM flow                      | Maintenance Flows                                                                                                                                                                                                                                                                                                                                                |                                                                                  | Drought Flows                                                                                                                                                                    |                                                                                                 |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| category                      | Reasons: IFR motivations                                                                                                                                                                                                                                                                                                                                         | Requirement                                                                      | Reasons: IFR motivations                                                                                                                                                         | Requirement                                                                                     |
| GEOMORPHOL                    | OGY                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |                                                                                                                                                                                  |                                                                                                 |
| Lowflow-dry<br>season         | - Mobilises gravels and sands.<br>Lower flows will lead to<br>embedding of cobbles and<br>complete cover of sand in the<br>river channel.                                                                                                                                                                                                                        | 8 m³/s                                                                           |                                                                                                                                                                                  |                                                                                                 |
| Lowflow-wet<br>season         | - Mobilise sediments and prevent excessive sediment deposition                                                                                                                                                                                                                                                                                                   | 18 m³/s                                                                          | <ul> <li>Mobilises sediments and<br/>prevent excessive sediment<br/>deposition</li> </ul>                                                                                        | 6 m³/s                                                                                          |
| Freshet-<br>spring+<br>summer | <ul> <li>30-50 m<sup>3</sup>/s will flush sediments<br/>and accumulated organic debris</li> <li>60 m<sup>3</sup>/s will ensure some flow<br/>throughout active channel and<br/>inundate all channels</li> </ul>                                                                                                                                                  | 30 m³/s x 2 Dec<br>50 m³/s x 1 Nov<br>60 m³/s x 2 Jan,<br>Mar                    | <ul> <li>Ensures flow throughout the active channel and reworking of sediments, inundate all channels</li> <li>March freshet reworks sediments mobilised during flood</li> </ul> | 30 m <sup>3</sup> /s x 1, Jan<br>60 m <sup>3</sup> /s x 1, Feb<br>30 m <sup>3</sup> /s x 1, Mar |
| Floods-wet<br>season          | <ul> <li>Mobilises bed material<br/>(bankfull), and mobilise<br/>sediments on the bed and<br/>terraces</li> <li>Deposits sediments and<br/>nutrients on the terraces. 180<br/>m3/s flood will place water on<br/>the terrace on the left bank<br/>Smaller floods will lead to long-<br/>term narrowing of channel, &amp;<br/>vegetation encroachment.</li> </ul> | 180 m³/s x 1, Feb<br>250 m³/s x 1, Feb                                           |                                                                                                                                                                                  |                                                                                                 |
| WATER QUALI                   |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                                                                                                  |                                                                                                 |
| Lowflow-wet<br>season         | <ul> <li>Provides sufficient velocity to<br/>prevent proliferation of<br/>filamentous algae, flush benthic<br/>algae and diatoms</li> </ul>                                                                                                                                                                                                                      | 18 m³/s                                                                          |                                                                                                                                                                                  |                                                                                                 |
| Freshet-<br>spring+<br>summer | <ul> <li>Provides sufficient flow velocity<br/>to dilute salts</li> <li>Provides sufficient current<br/>velocity to prevent proliferation<br/>of filamentous algae, flush<br/>benthic algae and diatoms that<br/>cover rocks, and limit habitat<br/>availability for invertebrates</li> </ul>                                                                    | 15 m³/s x 2 Oct<br>30 m³/s x 2 Dec<br>50 m³/s x 1 Nov<br>60 m³/s x 2 Jan,<br>Mar | <ul> <li>Flushes fine organic<br/>flocculent, benthic diatoms<br/>and algae away</li> </ul>                                                                                      | 10 m <sup>3</sup> /s x 1, Nov<br>20 m <sup>3</sup> /s x 1, Dec                                  |
| Freshet-<br>autumn            | <ul> <li>Provides sufficient flow velocity<br/>to dilute salts</li> <li>Washes away benthic algae and<br/>diatoms that cover rocks, and<br/>limit habitat availability for<br/>invertebrates</li> </ul>                                                                                                                                                          | 20 m³/s x 1, Apr                                                                 | <ul> <li>Mobilises fine sediments,<br/>increase biotope availability<br/>by flushing fine organic<br/>flocculant, diatoms, algae.</li> </ul>                                     | 8 m³/s x 1, Oct                                                                                 |



| BBM flow              | Maintenance Flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        | Drought Flows                                                                                                                                                                                                      |                                                                                                                                  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| category              | Reasons: IFR motivations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Requirement                                                            | Reasons: IFR motivations                                                                                                                                                                                           | Requirement                                                                                                                      |
| VEGETATION            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |                                                                                                                                                                                                                    |                                                                                                                                  |
| Lowflow-dry<br>season | <ul> <li>Provides water to marginal zone<br/>on right bank.</li> <li>Provides water to the rooting<br/>zones of Breonardia salicina and<br/>Ficus sycomorus on the banks of<br/>the active channel. (Breonardia<br/>need constant contact with<br/>water to ensure survival, growth<br/>and reproduction).</li> <li>Lower flows will detrimentally<br/>affect marginal zone during hot,<br/>dry conditions due to shortage of<br/>water for temperature control and<br/>transpiration</li> </ul>                                                         |                                                                        | - Ensures depth enough for<br>survival of juvenile stand of<br>Breonarida downstream of<br>the transect on the right<br>bank                                                                                       | 2.2 m <sup>3</sup> /s                                                                                                            |
| Lowflow-wet season    | <ul> <li>Mobilises sediment and prevents<br/>encroachment of vegetation into<br/>channel</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 m³/s                                                                | -                                                                                                                                                                                                                  |                                                                                                                                  |
| Freshet-              | - Provides low flows and freshets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 m <sup>3</sup> /s x 2, Dec                                          | - Provides water to encourage                                                                                                                                                                                      | 10 m <sup>3</sup> /s x 1, Nov                                                                                                    |
| spring+<br>summer     | <ul> <li>which will encourage<br/>germination and growth of<br/>riparian species on newly<br/>deposited sediments.</li> <li>60 m<sup>3</sup>/s saturates rooting zone<br/>of <i>Ficus sycomorus</i> to provide<br/>water for growth and survival of<br/>trees on banks of active channel</li> </ul>                                                                                                                                                                                                                                                      | 50 m <sup>3</sup> /s x 1, Nov<br>60 m <sup>3</sup> /s x 2, Jan,<br>Mar | <ul> <li>growth &amp; survival of<br/>marginal zone</li> <li>Saturates riparian zone of<br/>active channel and ensures<br/>maintenance of trees, and<br/>reduction of stress during<br/>hot dry periods</li> </ul> | 60 m <sup>3</sup> /s x 1, Feb<br>30 m <sup>3</sup> /s x 1, Mar<br>60 m <sup>3</sup> /s x 1, Feb<br>30 m <sup>3</sup> /s x 1, Mar |
| Floods-wet<br>season  | <ul> <li>Encourages further deposition of<br/>sediments on exposed roots of<br/>large Ficus sycomorus<br/>individuals on left bank.</li> <li>Deposits sediments and<br/>nutrients on terraces, providing<br/>nursery conditions for<br/>germination and establishment<br/>of Ficus sycamorus that will<br/>ensure the perpetuation of Ficus<br/>gallery forest on banks of active<br/>channel.</li> <li>Smaller flows may result in<br/>gradual depletion of Ficus gallery<br/>forest on active channel banks and<br/>accumulation of debris.</li> </ul> |                                                                        |                                                                                                                                                                                                                    |                                                                                                                                  |
| INVERTEBRAT           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |                                                                                                                                                                                                                    |                                                                                                                                  |
| Lowflow-dry<br>season | <ul> <li>Provides a reasonable diversity<br/>of hydraulic conditions and<br/>aquatic biotopes to maintain<br/>flow-sensitive invertebrates<br/>through the dry season.</li> <li>Provides sufficient depth and<br/>velocities to protect<br/>invertebrate fauna against<br/>high temperatures and low<br/>oxygen concentrations that<br/>may develop.</li> </ul>                                                                                                                                                                                          | 8 m³/s                                                                 | <ul> <li>Ensures survival of the invertebrate assemblage during drought</li> <li>Ensures sufficient velocities for flow sensitive mayfly species in this section of river</li> </ul>                               | 2.2 m <sup>3</sup> /s                                                                                                            |
| Lowflow-wet<br>season |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                      | <ul> <li>Provides sufficient habitat<br/>for many invertebrate<br/>species</li> <li>Provides adequate conditions<br/>for flow sensitive mayfly<br/>species in this section of<br/>river</li> </ul>                 | 6 m³/s                                                                                                                           |



| BBM flow                      | Maintenance Flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         | Drought Flows                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| category                      | Reasons: IFR motivations                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Requirement                                                                                             | Reasons: IFR motivations                                                                                                                                                                                                                                                                                                                        | Requirement                                                                                                                      |
| Freshet-<br>spring+<br>summer | <ul> <li>Flushes sediments and<br/>accumulated organic debris and<br/>improves habitat availability for<br/>aquatic invertebrates</li> </ul>                                                                                                                                                                                                                                                                                                                                                   | 30 m <sup>3</sup> /s x 2, Dec<br>50 m <sup>3</sup> /s x 1, Nov                                          | <ul> <li>Mobilise fines and debris,<br/>thereby improve habitat<br/>availability for aquatic<br/>invertebrates</li> </ul>                                                                                                                                                                                                                       | 5 m³/s x 1, Oct<br>20 m³/s x 1, Dec                                                                                              |
| Freshet-<br>autumn            | <ul> <li>Provides sufficient flow velocity<br/>to dilute salts and wash away<br/>benthic algae and diatoms that<br/>cover rocks &amp; limit habitat<br/>availability for invertebrates</li> </ul>                                                                                                                                                                                                                                                                                              | 20 m³/s x 1, Apr                                                                                        | <ul> <li>Mobilises fine sediments,<br/>increase biotope availability<br/>by flushing fine organic<br/>flocculant, diatoms, algae.</li> </ul>                                                                                                                                                                                                    | 8 m³/s x 1, Oct                                                                                                                  |
| FISH                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |
| Lowflow-dry<br>season         | - Provides a reasonable diversity<br>of hydraulic conditions and<br>aquatic biotopes to maintain<br>flow-sensitive fish                                                                                                                                                                                                                                                                                                                                                                        | 8 m³/s                                                                                                  | <ul> <li>Provides sufficient depth in critical habitat (riffle area in left channel) to ensure survival of flow-dependant fish species.</li> <li>Provides sufficient habitat (cover &amp; depth) for all fish species recorded here.</li> <li>Provides adequate depth to provide cooler pools for temperature-sensitive fish species</li> </ul> | 2.2 m³/s                                                                                                                         |
| Lowflow-wet<br>season         | <ul> <li>Optimises biotope availability<br/>for all fish species present</li> <li>Provides an abundant supply of<br/>marginal habitats to ensure<br/>spawning and recruitment of all<br/>species recorded in this<br/>segment.</li> <li>Provides suitable depth (0.99 m)<br/>and marginal habitat.</li> <li>Lower flows will reduce<br/>availability of marginal cover, and<br/>reduce breeding success. Surface<br/>area available for flow-dependent<br/>species will be reduced.</li> </ul> | 18 m³/s                                                                                                 | <ul> <li>Provides sufficient depth in<br/>fast-flowing habitats to<br/>sustain healthy populations<br/>of flow-dependant fish<br/>species (Class B objectives).</li> <li>Provides adequate cover in<br/>downstream multiple<br/>channels.</li> </ul>                                                                                            | 6 m³/s                                                                                                                           |
| Freshet-<br>spring+<br>summer | <ul> <li>Provides cues for fish breeding,</li> <li>Provides flows over spawning<br/>beds and clean these habitats,<br/>and</li> <li>Inundates some margins and<br/>backwaters that provide refuge<br/>for juvenile fish in growing<br/>stages.</li> <li>Smaller changes in water levels<br/>are unlikely to provide sufficient<br/>cues for migration and will reduce<br/>habitat diversity and therefore<br/>species diversity</li> </ul>                                                     | 50 m <sup>3</sup> /s x 1, Nov<br>30 m <sup>3</sup> /s x 2, Dec<br>60 m <sup>3</sup> /s x 2, Jan,<br>Mar | Provides sufficient flow velocity<br>to trigger fish spawning and<br>spawning migrations                                                                                                                                                                                                                                                        | 10 m <sup>3</sup> /s x 1, Nov<br>20 m <sup>3</sup> /s x 1, Dec<br>60 m <sup>3</sup> /s x 1, Feb<br>30 m <sup>3</sup> /s x 1, Mar |
| Floods-wet                    | Same reasons given in report as                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180 m <sup>3</sup> /s x 1, Feb                                                                          |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |
| season                        | for intra-annual floods                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250 m <sup>3</sup> /s x 1, Feb                                                                          |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |



# Appendix B:

# EWR results (.tab files and flood requirements) (Reserve studies)

# A.5 Olifants Comprehensive Reserve (DWAF 2001a-c)

Note: For Sites 5-16/17 these are the ".tab files" from the "Desktop Model". These were unavailable for Sites 1-4, so the tables from the reports (DWAF 2001a) are provided below. Where two ECs were provided, they are included. The MAR in DWAF (2001a) and the DWA excel sheet are both provided, unless they are exactly the same. That marked with \* is from DWAF 2001a, with \*\* from the DWA Excel file The .tab files in some cases differ from the tables within the Reserve report text.

## A.5.1 IFR1 IFR estimate: PES = D, REC=C

Note: There is a discrepancy in the DWAF (2001a) table below and the % MAR as provided in the DWA excel file (which gives 18.63%). It is unknown which is correct. The figure of 18.63 is the one that has been taken forward in later studies (e.g. Classification).

|                          | Monthly volu | ıme (10 <sup>6</sup> m <sup>3</sup> ) |            |             |        |
|--------------------------|--------------|---------------------------------------|------------|-------------|--------|
|                          | Low-Flows    | 3                                     | High-flows | Total Flows |        |
|                          | Maint.       | Drought                               | Maint.     | Drought     | Maint. |
| Oct                      | 0.86         | 0.24                                  | 0.230      | 0.17        | 1.090  |
| Nov                      | 1.46         | 0.54                                  | 0.840      | 0.33        | 2.300  |
| Dec                      | 1.95         | 0.72                                  | 1.440      | 0.32        | 3.390  |
| Jan                      | 1.95         | 0.83                                  | 5.950      | 3.84        | 7.900  |
| Feb                      | 2.13         | 0.75                                  | 14.520     | 0.32        | 16.650 |
| Mar                      | 1.74         | 0.7                                   | 1.450      |             | 3.190  |
| Apr                      | 1.3          | 0.6                                   |            | 0.105       | 1.300  |
| Мау                      | 0.91         | 0.54                                  |            |             | 0.910  |
| Jun                      | 0.7          | 0.44                                  |            |             | 0.700  |
| Jul                      | 0.67         | 0.4                                   |            |             | 0.670  |
| Aug                      | 0.62         | 0.32                                  |            |             | 0.620  |
| Sep                      | 0.54         | 0.23                                  |            |             | 0.540  |
| Total Vol                | 14.83        | 6.31                                  | 10.15      | 5.085       | 24.98  |
| % of MAR (MAR=148.6*)    | 9.980        | 4.246                                 | 16.440     | 3.417       | 26.420 |
| % of MAR (MAR=148.094**) | 10.014       | 4.261                                 | 16.496     | 3.429       | 26.510 |

APP TABLE 1: SUMMARY OF IFR ESTIMATE FOR IFR1 (CLASS C).



# A.5.2 IFR2 IFR estimate: PES = C, REC=B

#### APP TABLE 8: SUMMARY OF IFR ESTIMATE FOR IFR2 (CLASS B).

|                          | Monthly volu | ume (10 <b>°m³)</b> |            |             |         |
|--------------------------|--------------|---------------------|------------|-------------|---------|
|                          | Low-Flows    | 3                   | High-flows | Total Flows |         |
|                          | Maint.       | Drought             | Maint.     | Drought     | Maint.  |
| Oct                      | 2.68         | 0.8                 | 0.48       | 0.23        | 3.160   |
| Nov                      | 6.22         | 1.76                | 2.99       | 0.64        | 9.210   |
| Dec                      | 11.3         | 2.36                | 2.89       | 0.62        | 14.190  |
| Jan                      | 13.4         | 2.68                | 6.71       | 2.95        | 20.110  |
| Feb                      | 12.1         | 2.42                | 21.5       | 0.61        | 33.600  |
| Mar                      | 9.91         | 2.28                | 1.76       |             | 11.670  |
| Apr                      | 6.74         | 1.94                | 0.29       | 0.19        | 7.030   |
| May                      | 4.82         | 1.74                |            |             | 4.820   |
| Jun                      | 3.63         | 1.43                |            |             | 3.630   |
| Jul                      | 3.48         | 1.29                |            |             | 3.480   |
| Aug                      | 3.08         | 1.07                |            |             | 3.080   |
| Sep                      | 2.46         | 0.78                |            |             | 2.460   |
| Total Vol                | 79.820       | 20.550              | 36.620     | 5.240       | 116.440 |
| % of MAR (MAR=489.7*)    | 16.300       | 4.196               | 7.478      | 1.070       | 23.778  |
| % of MAR (MAR=489.731**) | 16.299       | 4.196               | 7.478      | 1.070       | 23.776  |

## A.5.3 IFR3 IFR estimate: PES = D, REC=C

#### APP TABLE 9: SUMMARY OF IFR ESTIMATE FOR IFR3 (CLASS C).

|                         | Monthly volu | ume (10 <sup>6</sup> m <sup>3</sup> ) |            |             |        |
|-------------------------|--------------|---------------------------------------|------------|-------------|--------|
|                         | Low-Flows    | 5                                     | High-flows | Total Flows |        |
|                         | Maint.       | Drought                               | Maint.     | Drought     | Maint. |
| Oct                     | 0.54         | 0.268                                 | 0.58       | 0.59        | 1.120  |
| Nov                     | 0.78         | 0.311                                 | 0.47       | 0.59        | 1.250  |
| Dec                     | 1.07         | 0.348                                 | 2.08       |             | 3.150  |
| Jan                     | 1.34         | 0.402                                 | 2.25       | 0.58        | 3.590  |
| Feb                     | 1.21         | 0.484                                 | 3.54       |             | 4.750  |
| Mar                     | 1.13         | 0.482                                 | 0.67       | 0.24        | 1.800  |
| Apr                     | 0.91         | 0.415                                 | 0.56       |             | 1.470  |
| Мау                     | 0.67         | 0.402                                 |            |             | 0.670  |
| Jun                     | 0.57         | 0.337                                 |            |             | 0.570  |
| Jul                     | 0.56         | 0.321                                 |            |             | 0.560  |
| Aug                     | 0.51         | 0.295                                 |            |             | 0.510  |
| Sep                     | 0.47         | 0.259                                 |            |             | 0.470  |
| Total Vol               | 9.760        | 4.324                                 | 10.150     | 2.000       | 19.910 |
| % of MAR (MAR=73.7*)    | 13.243       | 5.867                                 | 13.772     | 2.714       | 27.015 |
| % of MAR (MAR=73.675**) | 13.247       | 5.869                                 | 13.777     | 2.715       | 27.024 |

# A.5.4 IFR4 IFR estimate: PES = B, REC=B

#### APP TABLE 10: SUMMARY OF IFR ESTIMATE FOR IFR4 (CLASS B).

|                          | Monthly volu | ume (10 <sup>6</sup> <b>m</b> <sup>3</sup> ) |            |             |        |
|--------------------------|--------------|----------------------------------------------|------------|-------------|--------|
|                          | Low-Flows    | 5                                            | High-flows | Total Flows |        |
|                          | Maint.       | Drought                                      | Maint.     | Drought     | Maint. |
| Oct                      | 1.74         | 0.38                                         | 0.53       |             | 2.270  |
| Nov                      | 2.33         | 0.52                                         | 2.05       | 0.58        | 4.380  |
| Dec                      | 3.21         | 0.62                                         | 1.99       | 0.94        | 5.200  |
| Jan                      | 3.48         | 1.02                                         | 5.09       |             | 8.570  |
| Feb                      | 3.63         | 1.11                                         | 7.89       | 0.91        | 11.520 |
| Mar                      | 4.02         | 1.23                                         | 8.17       |             | 12.190 |
| Apr                      | 3.1          | 1.04                                         | 0.58       |             | 3.680  |
| Мау                      | 2.7          | 0.96                                         |            |             | 2.700  |
| Jun                      | 2.3          | 0.78                                         |            |             | 2.300  |
| Jul                      | 2.01         | 0.7                                          |            |             | 2.010  |
| Aug                      | 1.61         | 0.51                                         |            |             | 1.610  |
| Sep                      | 1.3          | 0.36                                         |            |             | 1.300  |
| Total Vol                | 31.430       | 9.230                                        | 26.300     | 2.430       | 57.730 |
| % of MAR (MAR=192.6*)    | 16.319       | 4.792                                        | 13.655     | 1.262       | 29.974 |
| % of MAR (MAR=192.857**) | 16.297       | 4.786                                        | 13.637     | 1.260       | 29.934 |



# A.5.5 IFR5 IFR estimate: PES = C, REC=B (but signed off REC=C)

APP TABLE 11: SUMMARY OF IFR ESTIMATE FOR IFR5 (CLASS B).

|                                                                                                                                                  | f : REGIO                                                                                                        |                                                                                              |                                                                                                                  |                                                                                                                     |                                                                                                                           |                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Annual Flow                                                                                                                                      | s (Mill.                                                                                                         | cu. m or                                                                                     | index va                                                                                                         | lues):                                                                                                              |                                                                                                                           |                                                                                                               |
| MAR                                                                                                                                              | =                                                                                                                | 502.596                                                                                      |                                                                                                                  |                                                                                                                     |                                                                                                                           |                                                                                                               |
| S.Dev.                                                                                                                                           | =                                                                                                                | 329.727,                                                                                     | ,                                                                                                                |                                                                                                                     |                                                                                                                           |                                                                                                               |
| CV                                                                                                                                               | =                                                                                                                | 0.656                                                                                        |                                                                                                                  |                                                                                                                     |                                                                                                                           |                                                                                                               |
| Q75                                                                                                                                              | =                                                                                                                | 12.295                                                                                       |                                                                                                                  |                                                                                                                     |                                                                                                                           |                                                                                                               |
| Q75/MMF                                                                                                                                          | =                                                                                                                | 0.294                                                                                        |                                                                                                                  |                                                                                                                     |                                                                                                                           |                                                                                                               |
| BFI Index                                                                                                                                        | =                                                                                                                | 0.481                                                                                        |                                                                                                                  |                                                                                                                     |                                                                                                                           |                                                                                                               |
| CV (JJA+JFM)                                                                                                                                     | Index =                                                                                                          | 1.881                                                                                        |                                                                                                                  |                                                                                                                     |                                                                                                                           |                                                                                                               |
| IFR Managem                                                                                                                                      | ent Class                                                                                                        | = B                                                                                          |                                                                                                                  |                                                                                                                     |                                                                                                                           |                                                                                                               |
| Total IFR                                                                                                                                        | =                                                                                                                | 124.031                                                                                      | (24.68 %                                                                                                         | MAR)                                                                                                                |                                                                                                                           |                                                                                                               |
| Maint. Lowf                                                                                                                                      | low =                                                                                                            | 78.557                                                                                       | (15.63 %                                                                                                         | MAR)                                                                                                                |                                                                                                                           |                                                                                                               |
| Drought Low                                                                                                                                      | flow =                                                                                                           | 27.713                                                                                       | ( 5.51 %                                                                                                         | MAR)                                                                                                                |                                                                                                                           |                                                                                                               |
| Maint. High                                                                                                                                      | flow =                                                                                                           | 45.474                                                                                       | ( 9.05 %                                                                                                         | MAR)                                                                                                                |                                                                                                                           |                                                                                                               |
| Monthly Dis                                                                                                                                      | tribution                                                                                                        | s (Mill.                                                                                     | cu. m.)                                                                                                          |                                                                                                                     |                                                                                                                           |                                                                                                               |
| Distributic                                                                                                                                      | n Type :                                                                                                         | Olifants                                                                                     |                                                                                                                  |                                                                                                                     |                                                                                                                           |                                                                                                               |
| Month Na                                                                                                                                         | +····· 1 171 e.                                                                                                  |                                                                                              | Nr. 11                                                                                                           | C' 1                                                                                                                | - (TDD)                                                                                                                   |                                                                                                               |
| Nonchi Na                                                                                                                                        | tural Flo                                                                                                        | WS                                                                                           | Modi                                                                                                             | fied Flow                                                                                                           | WS (IFR)                                                                                                                  |                                                                                                               |
| Honen Na                                                                                                                                         | cural Flo                                                                                                        | WS                                                                                           | Low                                                                                                              | flows                                                                                                               |                                                                                                                           | Total Flows                                                                                                   |
| Mean                                                                                                                                             |                                                                                                                  | CV                                                                                           | Low                                                                                                              | flows                                                                                                               | High Flows                                                                                                                | Total Flows<br>Maint.                                                                                         |
| Mean                                                                                                                                             |                                                                                                                  | CV                                                                                           | Low<br>Maint.                                                                                                    | flows<br>Drought                                                                                                    | High Flows                                                                                                                | Maint.                                                                                                        |
| Mean<br>Oct 22.122<br>Nov 61.154                                                                                                                 | SD<br>42.762<br>83.674                                                                                           | CV<br>1.933<br>1.368                                                                         | Low<br>Maint.<br>4.146<br>6.859                                                                                  | flows<br>Drought<br>1.471<br>2.459                                                                                  | High Flows<br>Maint.<br>0.417<br>0.831                                                                                    | Maint.<br>4.562<br>7.690                                                                                      |
| Mean<br>Oct 22.122<br>Nov 61.154<br>Dec 60.793                                                                                                   | SD<br>42.762<br>83.674<br>68.597                                                                                 | CV<br>1.933<br>1.368<br>1.128                                                                | Low<br>Maint.<br>4.146<br>6.859<br>6.820                                                                         | flows<br>Drought<br>1.471<br>2.459<br>2.407                                                                         | High Flows<br>Maint.<br>0.417<br>0.831<br>4.068                                                                           | Maint.<br>4.562<br>7.690<br>10.888                                                                            |
| Mean<br>Oct 22.122<br>Nov 61.154<br>Dec 60.793<br>Jan 87.022                                                                                     | SD<br>42.762<br>83.674<br>68.597<br>114.792                                                                      | CV<br>1.933<br>1.368<br>1.128<br>1.319                                                       | Low<br>Maint.<br>4.146<br>6.859<br>6.820<br>9.361                                                                | flows<br>Drought<br>1.471<br>2.459<br>2.407<br>3.343                                                                | High Flows<br>Maint.<br>0.417<br>0.831<br>4.068<br>17.688                                                                 | Maint.<br>4.562<br>7.690<br>10.888<br>27.049                                                                  |
| Mean<br>Oct 22.122<br>Nov 61.154<br>Dec 60.793<br>Jan 87.022<br>Feb 84.753                                                                       | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700                                                           | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589                                              | Low<br>Maint.<br>4.146<br>6.859<br>6.820<br>9.361<br>9.663                                                       | flows<br>Drought<br>1.471<br>2.459<br>2.407<br>3.343<br>3.382                                                       | High Flows<br>Maint.<br>0.417<br>0.831<br>4.068<br>17.688<br>17.585                                                       | Maint.<br>4.562<br>7.690<br>10.888<br>27.049<br>27.249                                                        |
| Mean<br>Oct 22.122<br>Nov 61.154<br>Dec 60.793<br>Jan 87.022<br>Feb 84.753<br>Mar 61.915                                                         | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700<br>74.764                                                 | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208                                     | Low<br>Maint.<br>4.146<br>6.859<br>6.820<br>9.361<br>9.663<br>8.960                                              | flows<br>Drought<br>1.471<br>2.459<br>2.407<br>3.343<br>3.382<br>3.076                                              | High Flows<br>Maint.<br>0.417<br>0.831<br>4.068<br>17.688<br>17.585<br>3.923                                              | Maint.<br>4.562<br>7.690<br>10.888<br>27.049<br>27.249<br>12.883                                              |
| Mean<br>Oct 22.122<br>Nov 61.154<br>Dec 60.793<br>Jan 87.022<br>Feb 84.753<br>Mar 61.915                                                         | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700                                                           | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208                                     | Low<br>Maint.<br>4.146<br>6.859<br>6.820<br>9.361<br>9.663<br>8.960                                              | flows<br>Drought<br>1.471<br>2.459<br>2.407<br>3.343<br>3.382<br>3.076                                              | High Flows<br>Maint.<br>0.417<br>0.831<br>4.068<br>17.688<br>17.585                                                       | Maint.<br>4.562<br>7.690<br>10.888<br>27.049<br>27.249<br>12.883<br>8.210                                     |
| Mean<br>Oct 22.122<br>Nov 61.154<br>Dec 60.793<br>Jan 87.022<br>Feb 84.753<br>Mar 61.915<br>Apr 39.342<br>May 27.559                             | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700<br>74.764<br>35.321<br>26.248                             | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208<br>0.898<br>0.952                   | Low<br>Maint.<br>4.146<br>6.859<br>6.820<br>9.361<br>9.663<br>8.960<br>7.247<br>7.222                            | flows<br>Drought<br>1.471<br>2.459<br>2.407<br>3.343<br>3.382<br>3.076<br>2.588<br>2.541                            | High Flows<br>Maint.<br>0.417<br>0.831<br>4.068<br>17.688<br>17.585<br>3.923<br>0.963<br>0.000                            | Maint.<br>4.562<br>7.690<br>10.888<br>27.049<br>27.249<br>12.883<br>8.210<br>7.222                            |
| Mean<br>Oct 22.122<br>Nov 61.154<br>Dec 60.793<br>Jan 87.022<br>Feb 84.753<br>Mar 61.915<br>Apr 39.342<br>May 27.559<br>Jun 19.383               | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700<br>74.764<br>35.321<br>26.248<br>12.588                   | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208<br>0.898<br>0.952<br>0.649          | Low<br>Maint.<br>4.146<br>6.859<br>6.820<br>9.361<br>9.663<br>8.960<br>7.247<br>7.222<br>5.694                   | flows<br>Drought<br>1.471<br>2.459<br>2.407<br>3.343<br>3.382<br>3.076<br>2.588<br>2.541<br>1.941                   | High Flows<br>Maint.<br>0.417<br>0.831<br>4.068<br>17.688<br>17.585<br>3.923<br>0.963<br>0.000<br>0.000                   | Maint.<br>4.562<br>7.690<br>10.888<br>27.049<br>27.249<br>12.883<br>8.210<br>7.222<br>5.694                   |
| Mean<br>Oct 22.122<br>Nov 61.154<br>Dec 60.793<br>Jan 87.022<br>Feb 84.753<br>Mar 61.915<br>Apr 39.342<br>May 27.559<br>Jun 19.383<br>Jul 15.092 | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700<br>74.764<br>35.321<br>26.248<br>12.588<br>6.712          | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208<br>0.898<br>0.952<br>0.649<br>0.445 | Low<br>Maint.<br>4.146<br>6.859<br>6.820<br>9.361<br>9.663<br>8.960<br>7.247<br>7.222<br>5.694<br>4.814          | flows<br>Drought<br>1.471<br>2.459<br>2.407<br>3.343<br>3.382<br>3.076<br>2.588<br>2.541<br>1.941<br>1.739          | High Flows<br>Maint.<br>0.417<br>0.831<br>4.068<br>17.688<br>17.585<br>3.923<br>0.963<br>0.963<br>0.000<br>0.000<br>0.000 | Maint.<br>4.562<br>7.690<br>10.888<br>27.049<br>27.249<br>12.883<br>8.210<br>7.222<br>5.694<br>4.814          |
| Mean<br>Oct 22.122<br>Nov 61.154<br>Dec 60.793<br>Jan 87.022<br>Feb 84.753<br>Mar 61.915<br>Apr 39.342<br>May 27.559<br>Jun 19.383<br>Jul 15.092 | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700<br>74.764<br>35.321<br>26.248<br>12.588<br>6.712<br>5.349 | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208<br>0.898<br>0.952<br>0.649<br>0.445 | Low<br>Maint.<br>4.146<br>6.859<br>6.820<br>9.361<br>9.663<br>8.960<br>7.247<br>7.222<br>5.694<br>4.814<br>4.146 | flows<br>Drought<br>1.471<br>2.459<br>2.407<br>3.343<br>3.382<br>3.076<br>2.588<br>2.541<br>1.941<br>1.739<br>1.471 | High Flows<br>Maint.<br>0.417<br>0.831<br>4.068<br>17.688<br>17.585<br>3.923<br>0.963<br>0.000<br>0.000<br>0.000<br>0.000 | Maint.<br>4.562<br>7.690<br>10.888<br>27.049<br>27.249<br>12.883<br>8.210<br>7.222<br>5.694<br>4.814<br>4.146 |

APP TABLE 12: SUMMARY OF IFR ESTIMATE FOR IFR5 (CLASS C).

| Annual H                                                                                                                                                                                                                                        | Flows                                                                                | (Mill.                                                                                                  | cu. m or                                                                                     | index va                                                                                                | lues):                                                                                                     |                                                                                                                 |                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| MAR                                                                                                                                                                                                                                             |                                                                                      | =                                                                                                       | 502.596                                                                                      |                                                                                                         |                                                                                                            |                                                                                                                 |                                                                                                      |
| S.Dev.                                                                                                                                                                                                                                          |                                                                                      | =                                                                                                       | 329.727                                                                                      |                                                                                                         |                                                                                                            |                                                                                                                 |                                                                                                      |
| CV                                                                                                                                                                                                                                              |                                                                                      | =                                                                                                       | 0.656                                                                                        |                                                                                                         |                                                                                                            |                                                                                                                 |                                                                                                      |
| Q75                                                                                                                                                                                                                                             |                                                                                      | =                                                                                                       | 12.295                                                                                       |                                                                                                         |                                                                                                            |                                                                                                                 |                                                                                                      |
| Q75/MMF                                                                                                                                                                                                                                         |                                                                                      | =                                                                                                       | 0.294                                                                                        |                                                                                                         |                                                                                                            |                                                                                                                 |                                                                                                      |
| BFI Inde                                                                                                                                                                                                                                        | ex                                                                                   | =                                                                                                       | 0.481                                                                                        |                                                                                                         |                                                                                                            |                                                                                                                 |                                                                                                      |
| CV (JJA+J                                                                                                                                                                                                                                       | JFM)                                                                                 | Index =                                                                                                 | 1.881                                                                                        |                                                                                                         |                                                                                                            |                                                                                                                 |                                                                                                      |
| IFR Mana                                                                                                                                                                                                                                        | ageme                                                                                | nt Class                                                                                                | = C                                                                                          |                                                                                                         |                                                                                                            |                                                                                                                 |                                                                                                      |
| Total II                                                                                                                                                                                                                                        | FR                                                                                   | =                                                                                                       | 95.910                                                                                       | (19.08 %                                                                                                | MAR)                                                                                                       |                                                                                                                 |                                                                                                      |
| Maint. 1                                                                                                                                                                                                                                        | Lowfl                                                                                | - wo                                                                                                    | 50.236                                                                                       | (10.00 %                                                                                                | MAR)                                                                                                       |                                                                                                                 |                                                                                                      |
| Drought                                                                                                                                                                                                                                         | Lowf                                                                                 | low =                                                                                                   | 27.809                                                                                       | ( 5.53 %                                                                                                | MAR)                                                                                                       |                                                                                                                 |                                                                                                      |
| Maint. H                                                                                                                                                                                                                                        | Highf                                                                                | low =                                                                                                   | 45.674                                                                                       | ( 9.09 %                                                                                                | MAR)                                                                                                       |                                                                                                                 |                                                                                                      |
| Monthly                                                                                                                                                                                                                                         | Dist                                                                                 | ribution                                                                                                | s (Mill.                                                                                     | cu. m.)                                                                                                 |                                                                                                            |                                                                                                                 |                                                                                                      |
| Distribu                                                                                                                                                                                                                                        | ution                                                                                | Type :                                                                                                  | Olifants                                                                                     |                                                                                                         |                                                                                                            |                                                                                                                 |                                                                                                      |
| Month                                                                                                                                                                                                                                           | No+                                                                                  | ural Flo                                                                                                |                                                                                              | Modi                                                                                                    |                                                                                                            | TED)                                                                                                            |                                                                                                      |
| MONUN                                                                                                                                                                                                                                           | Nat                                                                                  | ural FIO                                                                                                | WS                                                                                           | Moul                                                                                                    | fied Flow                                                                                                  | NS (IFR)                                                                                                        |                                                                                                      |
| MOIICII                                                                                                                                                                                                                                         | nac                                                                                  | urai Fio                                                                                                | WS                                                                                           |                                                                                                         | flows                                                                                                      | . ,                                                                                                             | Total Flows                                                                                          |
|                                                                                                                                                                                                                                                 | Mean                                                                                 | SD                                                                                                      | CV                                                                                           | Low                                                                                                     | flows                                                                                                      | . ,                                                                                                             |                                                                                                      |
| 1                                                                                                                                                                                                                                               | Mean                                                                                 |                                                                                                         | CV                                                                                           | Low<br>Maint.                                                                                           | flows                                                                                                      | High Flows<br>Maint.                                                                                            |                                                                                                      |
| N<br>Oct 22                                                                                                                                                                                                                                     | Mean<br>.122                                                                         | SD                                                                                                      | CV<br>1.933                                                                                  | Low<br>Maint.<br>2.669                                                                                  | flows<br>Drought                                                                                           | High Flows<br>Maint.<br>1.888                                                                                   | Maint.                                                                                               |
| Nov 61                                                                                                                                                                                                                                          | Mean<br>.122<br>.154                                                                 | SD<br>42.762                                                                                            | CV<br>1.933<br>1.368                                                                         | Low<br>Maint.<br>2.669<br>4.388                                                                         | flows<br>Drought<br>1.497<br>2.427                                                                         | High Flows<br>Maint.<br>1.888                                                                                   | Maint.<br>4.557<br>11.033                                                                            |
| 0ct 22<br>Nov 61<br>Dec 60                                                                                                                                                                                                                      | Mean<br>.122<br>.154<br>.793                                                         | SD<br>42.762<br>83.674                                                                                  | CV<br>1.933<br>1.368<br>1.128                                                                | Low<br>Maint.<br>2.669<br>4.388<br>4.366                                                                | flows<br>Drought<br>1.497<br>2.427                                                                         | High Flows<br>Maint.<br>1.888<br>6.644<br>6.605                                                                 | Maint.<br>4.557<br>11.033<br>10.971                                                                  |
| Oct 22<br>Nov 61<br>Dec 60<br>Jan 87                                                                                                                                                                                                            | Mean<br>.122<br>.154<br>.793<br>.022                                                 | SD<br>42.762<br>83.674<br>68.597                                                                        | CV<br>1.933<br>1.368<br>1.128<br>1.319                                                       | Low<br>Maint.<br>2.669<br>4.388<br>4.366<br>5.979                                                       | flows<br>Drought<br>1.497<br>2.427<br>2.415                                                                | High Flows<br>Maint.<br>1.888<br>6.644<br>6.605<br>18.145                                                       | Maint.<br>4.557<br>11.033<br>10.971<br>24.124                                                        |
| 0ct 22<br>Nov 61<br>Dec 60<br>Jan 87<br>Feb 84                                                                                                                                                                                                  | Mean<br>.122<br>.154<br>.793<br>.022<br>.753                                         | SD<br>42.762<br>83.674<br>68.597<br>114.792                                                             | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589                                              | Low<br>Maint.<br>2.669<br>4.388<br>4.366<br>5.979<br>6.187                                              | flows<br>Drought<br>1.497<br>2.427<br>2.415<br>3.286                                                       | High Flows<br>Maint.<br>1.888<br>6.644<br>6.605<br>18.145<br>3.621                                              | Maint.<br>4.557<br>11.033<br>10.971<br>24.124<br>9.808                                               |
| 0ct 22<br>Nov 61<br>Dec 60<br>Jan 87<br>Feb 84<br>Mar 61                                                                                                                                                                                        | Mean<br>.122<br>.154<br>.793<br>.022<br>.753<br>.915                                 | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700                                                  | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208                                     | Low<br>Maint.<br>2.669<br>4.388<br>4.366<br>5.979<br>6.187<br>5.704                                     | flows<br>Drought<br>1.497<br>2.427<br>2.415<br>3.286<br>3.399                                              | High Flows<br>Maint.<br>1.888<br>6.644<br>6.605<br>18.145<br>3.621<br>7.243                                     | Maint.<br>4.557<br>11.033<br>10.971<br>24.124<br>9.808                                               |
| Nov         61           Dec         60           Jan         87           Feb         84           Mar         61           Apr         39                                                                                                     | Mean<br>.122<br>.154<br>.793<br>.022<br>.753<br>.915<br>.342                         | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700<br>74.764                                        | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208<br>0.898                            | Low<br>Maint.<br>2.669<br>4.388<br>4.366<br>5.979<br>6.187<br>5.704<br>4.660                            | flows<br>Drought<br>1.497<br>2.427<br>2.415<br>3.286<br>3.399<br>3.138<br>2.573                            | High Flows<br>Maint.<br>1.888<br>6.644<br>6.605<br>18.145<br>3.621<br>7.243<br>1.527                            | Maint.<br>4.557<br>11.033<br>10.971<br>24.124<br>9.808<br>12.947                                     |
| Nov         61           Dec         60           Jan         87           Feb         84           Mar         61           Apr         39           May         27                                                                            | Mean<br>.122<br>.154<br>.793<br>.022<br>.753<br>.915<br>.342<br>.559                 | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700<br>74.764<br>35.321                              | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208<br>0.898<br>0.952                   | Low<br>Maint.<br>2.669<br>4.388<br>4.366<br>5.979<br>6.187<br>5.704<br>4.660<br>4.582                   | flows<br>Drought<br>1.497<br>2.427<br>2.415<br>3.286<br>3.399<br>3.138<br>2.573<br>2.531                   | High Flows<br>Maint.<br>1.888<br>6.644<br>6.605<br>18.145<br>3.621<br>7.243<br>1.527<br>0.000                   | Maint.<br>4.557<br>11.033<br>10.971<br>24.124<br>9.808<br>12.947<br>6.186                            |
| Oct         22           Nov         61           Dec         60           Jan         87           Feb         84           Mar         61           Apr         39           May         27           Jun         19                          | Mean<br>.122<br>.154<br>.793<br>.022<br>.753<br>.915<br>.342<br>.559<br>.383         | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700<br>74.764<br>35.321<br>26.248                    | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208<br>0.898<br>0.952<br>0.649          | Low<br>Maint.<br>2.669<br>4.388<br>4.366<br>5.979<br>6.187<br>5.704<br>4.660<br>4.582<br>3.608          | flows<br>Drought<br>1.497<br>2.427<br>2.415<br>3.286<br>3.399<br>3.138<br>2.573<br>2.531                   | High Flows<br>Maint.<br>1.888<br>6.644<br>6.605<br>18.145<br>3.621<br>7.243<br>1.527<br>0.000<br>0.000          | Maint.<br>4.557<br>11.033<br>10.971<br>24.124<br>9.808<br>12.947<br>6.186<br>4.582<br>3.608          |
| Nov         61           Dec         60           Jan         87           Feb         84           Mar         61           Apr         39           May         27           Jun         19           Jul         15                          | Mean<br>.122<br>.154<br>.793<br>.022<br>.753<br>.915<br>.342<br>.559<br>.383<br>.092 | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700<br>74.764<br>35.321<br>26.248<br>12.588          | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208<br>0.898<br>0.952<br>0.649<br>0.445 | Low<br>Maint.<br>2.669<br>4.388<br>4.366<br>5.979<br>6.187<br>5.704<br>4.660<br>4.582<br>3.608<br>3.103 | flows<br>Drought<br>1.497<br>2.427<br>2.415<br>3.286<br>3.399<br>3.138<br>2.573<br>2.531<br>2.005<br>1.732 | High Flows<br>Maint.<br>1.888<br>6.644<br>6.605<br>18.145<br>3.621<br>7.243<br>1.527<br>0.000<br>0.000<br>0.000 | Maint.<br>4.557<br>11.033<br>10.971<br>24.124<br>9.808<br>12.947<br>6.186<br>4.582<br>3.608<br>3.103 |
| Nov         61           Dec         60           Jan         87           Feb         84           Mar         61           Apr         39           May         27           Jun         19           Jul         15           Aug         12 | Mean<br>.122<br>.154<br>.793<br>.022<br>.753<br>.915<br>.342<br>.559<br>.383<br>.092 | SD<br>42.762<br>83.674<br>68.597<br>114.792<br>134.700<br>74.764<br>35.321<br>26.248<br>12.588<br>6.712 | CV<br>1.933<br>1.368<br>1.128<br>1.319<br>1.589<br>1.208<br>0.898<br>0.952<br>0.649<br>0.445 | Low<br>Maint.<br>2.669<br>4.388<br>4.366<br>5.979<br>6.187<br>5.704<br>4.660<br>4.582<br>3.608<br>3.103 | flows<br>Drought<br>1.497<br>2.427<br>2.415<br>3.286<br>3.399<br>3.138<br>2.573<br>2.531<br>2.005<br>1.732 | High Flows<br>Maint.<br>1.888<br>6.644<br>6.605<br>18.145<br>3.621<br>7.243<br>1.527<br>0.000<br>0.000<br>0.000 | Maint.<br>4.557<br>11.033<br>10.971<br>24.124<br>9.808<br>12.947<br>6.186<br>4.582<br>3.608<br>3.103 |



# A.5.6 IFR6 IFR estimate: PES=E, REC = D

Note possible error in .tab file Drought=Maintenance

```
APP TABLE 13: SUMMARY OF IFR ESTIMATE FOR IFR6 (CLASS D).
```

|        |          |           |         | •••••     | •••••     |            |             |
|--------|----------|-----------|---------|-----------|-----------|------------|-------------|
|        |          | : REGION  |         |           |           |            |             |
| Annua  | l Flows  | (Mill. cu | ı. m or | index va  | lues):    |            |             |
| MAR    |          | =         | 63.417  |           |           |            |             |
| S.Dev  | •        | =         | 50.068  |           |           |            |             |
| CV     |          | =         | 0.790   |           |           |            |             |
| Q75    |          | =         | 1.500   |           |           |            |             |
| Q75/M  | MF       | =         | 0.284   |           |           |            |             |
| BFI I  | ndex     | =         | 0.474   |           |           |            |             |
| CV (JJ | A+JFM) I | ndex =    | 1.971   |           |           |            |             |
| IFR M  | anagemen | t Class = | = D     |           |           |            |             |
| Total  | IFR      | =         | 11.328  | (17.86 원  | MAR)      |            |             |
| Maint  | . Lowflo | = w       | 4.008   | ( 6.32 %  | MAR)      |            |             |
| Droug  | ht Lowfl | = wo.     | 4.008   | ( 6.32 %  | MAR)      |            |             |
| Maint  | . Highfl | = wo.     | 7.320   | (11.54 %) | MAR)      |            |             |
| Month  | ly Distr | ibutions  | (Mill.  | cu. m.)   |           |            |             |
| Distr  | ibution  | Type : O  | lifants |           |           |            |             |
| Month  | Natu     | ral Flows | 5       | Modi      | fied Flow | s (IFR)    |             |
|        |          |           |         | Low       | flows     | High Flows | Total Flows |
|        | Mean     | SD        | CV      | Maint.    | Drought   | Maint.     | Maint.      |
| Oct    | 2.273    | 3.831     | 1.685   | 0.188     | 0.188     | 0.077      | 0.264       |
|        |          |           |         |           | 0.337     |            | 0.576       |
| Dec    | 8.354    | 9.870     | 1.181   | 0.375     | 0.375     | 1.420      | 1.796       |
| Jan    | 12.234   | 21.007    | 1.717   | 0.536     | 0.536     | 1.123      | 1.659       |
| Feb    | 10.416   | 15.423    | 1.481   | 0.484     | 0.484     | 2.685      | 3.169       |
| Mar    | 7.462    | 10.111    | 1.355   | 0.455     | 0.455     | 1.537      | 1.992       |
| Apr    | 4.822    | 5.269     | 1.093   | 0.363     | 0.363     | 0.239      | 0.602       |
| May    | 3.170    | 2.269     | 0.716   | 0.348     | 0.348     | 0.000      | 0.348       |
| Jun    | 2.368    | 1.190     | 0.503   | 0.285     | 0.285     | 0.000      | 0.285       |
| Jul    | 1.937    | 0.854     | 0.441   | 0.241     | 0.241     | 0.000      | 0.241       |
| Aug    | 1.626    | 0.680     | 0.418   | 0.214     | 0.214     | 0.000      | 0.214       |
| Sep    | 1.376    | 0.577     | 0.419   | 0.181     | 0.181     | 0.000      | 0.181       |
|        |          |           |         |           |           |            |             |

# A.5.7 IFR6B IFR estimate: PES=E, REC=C

| APP TABLE 1 | 4:          | SUMMARY  | OF IFF | R ESTIMATE | FOR | IFR6B   | (CLASS B) |  |
|-------------|-------------|----------|--------|------------|-----|---------|-----------|--|
| AFF TADLL I | <b>-T</b> . | JUIWWART |        |            |     | 11 1\0D | (CLAJJ D) |  |

|                                      | <i>_</i>                     |           |         |          |           |            | II KOD (CEASS |
|--------------------------------------|------------------------------|-----------|---------|----------|-----------|------------|---------------|
|                                      |                              | : Quaterr |         |          |           | D          |               |
| Annual                               | Flows                        | (Mill. cu | ı. m or | index va | lues):    |            |               |
| MAR                                  |                              | =         | 42.351  |          |           |            |               |
| S.Dev.                               |                              | =         | 38.654  |          |           |            |               |
| CV                                   |                              | =         | 0.913   |          |           |            |               |
| Q75                                  |                              | =         | 0.700   |          |           |            |               |
| Q75/MM                               | 1F                           | =         | 0.198   |          |           |            |               |
| BFI In                               | ndex                         | =         | 0.411   |          |           |            |               |
| CV (JJA                              | A+JFM) I                     | ndex =    | 2.606   |          |           |            |               |
| IFR Ma                               | nagemen                      | t Class = | = B     |          |           |            |               |
| Total                                | IFR                          | =         | 13.325  | (31.46 % | MAR)      |            |               |
|                                      |                              | - w       |         |          |           |            |               |
| Drough                               | nt Lowfl                     | - wo      | 2.675   | ( 6.32 % | MAR)      |            |               |
| Maint. Highflow = 4.874 (11.51 %MAR) |                              |           |         |          |           |            |               |
| Monthly Distributions (Mill. cu. m.) |                              |           |         |          |           |            |               |
| Distri                               | Distribution Type : Olifants |           |         |          |           |            |               |
| Month                                | Natu                         | ral Flows | 3       | Modi     | fied Flow | /s (IFR)   |               |
|                                      |                              |           |         | Low :    | flows     | High Flows | Total Flows   |
|                                      | Mean                         | SD        | CV      | Maint.   | Drought   | Maint.     | Maint.        |
| Oct                                  | 1.528                        | 2.031     | 1.330   | 0.376    | 0.121     | 0.161      | 0.536         |
| Nov                                  | 5.144                        | 10.105    | 1.964   | 0.767    | 0.242     | 0.689      | 1.456         |
| Dec                                  | 5.503                        | 7.899     | 1.436   | 0.816    | 0.258     | 0.737      | 1.553         |
| Jan                                  | 8.899                        | 18.910    | 2.125   | 1.282    | 0.403     | 2.082      | 3.364         |
| Feb                                  | 6.633                        | 10.165    | 1.532   | 1.032    | 0.325     | 0.344      | 1.376         |
| Mar                                  | 5.309                        | 9.713     | 1.829   | 1.033    | 0.325     | 0.687      | 1.720         |
| Apr                                  | 3.656                        | 5.483     | 1.499   | 0.897    | 0.283     | 0.175      | 1.072         |
| May                                  | 2.026                        | 2.306     | 1.138   | 0.710    | 0.225     | 0.000      | 0.710         |
| Jun                                  | 1.207                        | 1.048     | 0.868   | 0.475    | 0.152     | 0.000      | 0.475         |
| Jul                                  | 0.964                        | 0.703     | 0.729   | 0.414    | 0.132     | 0.000      | 0.414         |
| Aug                                  | 0.813                        | 0.596     | 0.733   | 0.358    | 0.115     | 0.000      | 0.358         |
| Sep                                  | 0.669                        | 0.488     | 0.729   | 0.291    | 0.094     | 0.000      | 0.291         |
|                                      |                              |           |         |          |           |            |               |



#### APP TABLE15: SUMMARY OF IFR ESTIMATE FOR IFR6B (CLASS C).

| - 1                                                                                            | <b>D</b> 66                                                          | <u> </u>                                                               |                                                                               |                                                                               |                                                                               | -                                                                             |                                                                               |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Total Runoff : Quaternaries B31A B31B B31C B31D<br>Annual Flows (Mill. cu. m or index values): |                                                                      |                                                                        |                                                                               |                                                                               |                                                                               |                                                                               |                                                                               |
|                                                                                                | Flows                                                                |                                                                        |                                                                               | index valu                                                                    | ues):                                                                         |                                                                               |                                                                               |
| MAR                                                                                            |                                                                      |                                                                        | 42.351                                                                        |                                                                               |                                                                               |                                                                               |                                                                               |
| S.Dev.                                                                                         |                                                                      | =                                                                      | 38.654                                                                        |                                                                               |                                                                               |                                                                               |                                                                               |
| CV                                                                                             |                                                                      |                                                                        | 0.913                                                                         |                                                                               |                                                                               |                                                                               |                                                                               |
| Q75                                                                                            |                                                                      |                                                                        | 0.700                                                                         |                                                                               |                                                                               |                                                                               |                                                                               |
| Q75/MM                                                                                         |                                                                      | =                                                                      |                                                                               |                                                                               |                                                                               |                                                                               |                                                                               |
| BFI In                                                                                         |                                                                      |                                                                        | 0.411                                                                         |                                                                               |                                                                               |                                                                               |                                                                               |
|                                                                                                |                                                                      | ndex =                                                                 |                                                                               |                                                                               |                                                                               |                                                                               |                                                                               |
|                                                                                                | -                                                                    | t Class =                                                              |                                                                               |                                                                               |                                                                               |                                                                               |                                                                               |
| Total                                                                                          | IFR                                                                  | =                                                                      | 9.787                                                                         | (23.11 %MZ                                                                    | AR)                                                                           |                                                                               |                                                                               |
| Maint.                                                                                         | Lowflo                                                               | w =                                                                    | 4.911                                                                         | (11.60 %MZ                                                                    | AR)                                                                           |                                                                               |                                                                               |
| Drought Lowflow = 2.675 ( 6.32 %MAR)                                                           |                                                                      |                                                                        |                                                                               |                                                                               |                                                                               |                                                                               |                                                                               |
| Maint. Highflow = 4.876 (11.51 %MAR)                                                           |                                                                      |                                                                        |                                                                               |                                                                               |                                                                               |                                                                               |                                                                               |
| Monthly Distributions (Mill. cu. m.)                                                           |                                                                      |                                                                        |                                                                               |                                                                               |                                                                               |                                                                               |                                                                               |
| Distri                                                                                         | Distribution Type : Olifants                                         |                                                                        |                                                                               |                                                                               |                                                                               |                                                                               |                                                                               |
| Month                                                                                          | Natu                                                                 | ral Flows                                                              | 5                                                                             | Modif                                                                         | ied Flow                                                                      | vs (IFR)                                                                      |                                                                               |
|                                                                                                |                                                                      |                                                                        |                                                                               | Low f                                                                         | lows                                                                          | High Flows                                                                    | Total Flows                                                                   |
|                                                                                                | Mean                                                                 | SD                                                                     | CV                                                                            | Maint. I                                                                      | Drought                                                                       | Maint.                                                                        | Maint.                                                                        |
| Oct                                                                                            | 1.528                                                                | 2.031                                                                  | 1.330                                                                         | 0.220                                                                         | 0.121                                                                         | 0.161                                                                         | 0.381                                                                         |
| Nov                                                                                            |                                                                      |                                                                        |                                                                               | 0.000                                                                         | 0.121                                                                         | 0.101                                                                         | 0.301                                                                         |
|                                                                                                | 5.144                                                                | 10.105                                                                 |                                                                               | 0.445                                                                         |                                                                               |                                                                               |                                                                               |
| Dec                                                                                            |                                                                      |                                                                        | 1.964                                                                         |                                                                               | 0.242                                                                         | 0.689                                                                         | 1.134                                                                         |
|                                                                                                |                                                                      | 7.899                                                                  | 1.964<br>1.436                                                                | 0.445                                                                         | 0.242<br>0.258                                                                | 0.689<br>0.737                                                                | 1.134<br>1.211                                                                |
|                                                                                                | 5.503<br>8.899                                                       | 7.899<br>18.910                                                        | 1.964<br>1.436<br>2.125                                                       | 0.445<br>0.474                                                                | 0.242<br>0.258<br>0.403                                                       | 0.689<br>0.737<br>2.083                                                       | 1.134<br>1.211<br>2.824                                                       |
| Jan                                                                                            | 5.503<br>8.899<br>6.633                                              | 7.899<br>18.910                                                        | 1.964<br>1.436<br>2.125<br>1.532                                              | 0.445<br>0.474<br>0.742<br>0.598                                              | 0.242<br>0.258<br>0.403                                                       | 0.689<br>0.737<br>2.083<br>0.344                                              | 1.134<br>1.211<br>2.824<br>0.941                                              |
| Jan<br>Feb                                                                                     | 5.503<br>8.899<br>6.633<br>5.309                                     | 7.899<br>18.910<br>10.165                                              | 1.964<br>1.436<br>2.125<br>1.532<br>1.829                                     | 0.445<br>0.474<br>0.742<br>0.598<br>0.598                                     | 0.242<br>0.258<br>0.403<br>0.325<br>0.325                                     | 0.689<br>0.737<br>2.083<br>0.344<br>0.687                                     | 1.134<br>1.211<br>2.824<br>0.941<br>1.285                                     |
| Jan<br>Feb<br>Mar                                                                              | 5.503<br>8.899<br>6.633<br>5.309<br>3.656                            | 7.899<br>18.910<br>10.165<br>9.713                                     | 1.964<br>1.436<br>2.125<br>1.532<br>1.829                                     | 0.445<br>0.474<br>0.742<br>0.598<br>0.598<br>0.520                            | 0.242<br>0.258<br>0.403<br>0.325<br>0.325<br>0.283                            | 0.689<br>0.737<br>2.083<br>0.344<br>0.687<br>0.175                            | 1.134<br>1.211<br>2.824<br>0.941<br>1.285<br>0.695                            |
| Jan<br>Feb<br>Mar<br>Apr                                                                       | 5.503<br>8.899<br>6.633<br>5.309<br>3.656<br>2.026                   | 7.899<br>18.910<br>10.165<br>9.713<br>5.483                            | 1.964<br>1.436<br>2.125<br>1.532<br>1.829<br>1.499<br>1.138                   | 0.445<br>0.474<br>0.742<br>0.598<br>0.598<br>0.520<br>0.412                   | 0.242<br>0.258<br>0.403<br>0.325<br>0.325<br>0.283<br>0.225                   | 0.689<br>0.737<br>2.083<br>0.344<br>0.687<br>0.175<br>0.000                   | 1.134<br>1.211<br>2.824<br>0.941<br>1.285<br>0.695<br>0.412                   |
| Jan<br>Feb<br>Mar<br>Apr<br>May                                                                | 5.503<br>8.899<br>6.633<br>5.309<br>3.656<br>2.026<br>1.207          | 7.899<br>18.910<br>10.165<br>9.713<br>5.483<br>2.306<br>1.048          | 1.964<br>1.436<br>2.125<br>1.532<br>1.829<br>1.499<br>1.138<br>0.868          | 0.445<br>0.474<br>0.742<br>0.598<br>0.598<br>0.520<br>0.412                   | 0.242<br>0.258<br>0.403<br>0.325<br>0.325<br>0.283<br>0.225<br>0.152          | 0.689<br>0.737<br>2.083<br>0.344<br>0.687<br>0.175<br>0.000<br>0.000          | 1.134<br>1.211<br>2.824<br>0.941<br>1.285<br>0.695<br>0.412<br>0.277          |
| Jan<br>Feb<br>Mar<br>Apr<br>May<br>Jun<br>Jul                                                  | 5.503<br>8.899<br>6.633<br>5.309<br>3.656<br>2.026<br>1.207<br>0.964 | 7.899<br>18.910<br>10.165<br>9.713<br>5.483<br>2.306<br>1.048<br>0.703 | 1.964<br>1.436<br>2.125<br>1.532<br>1.829<br>1.499<br>1.138<br>0.868<br>0.729 | 0.445<br>0.474<br>0.742<br>0.598<br>0.598<br>0.520<br>0.412<br>0.277<br>0.242 | 0.242<br>0.258<br>0.403<br>0.325<br>0.325<br>0.283<br>0.225<br>0.152<br>0.132 | 0.689<br>0.737<br>2.083<br>0.344<br>0.687<br>0.175<br>0.000<br>0.000<br>0.000 | 1.134<br>1.211<br>2.824<br>0.941<br>1.285<br>0.695<br>0.412<br>0.277<br>0.242 |
| Jan<br>Feb<br>Mar<br>Apr<br>May<br>Jun                                                         | 5.503<br>8.899<br>6.633<br>5.309<br>3.656<br>2.026<br>1.207<br>0.964 | 7.899<br>18.910<br>10.165<br>9.713<br>5.483<br>2.306<br>1.048          | 1.964<br>1.436<br>2.125<br>1.532<br>1.829<br>1.499<br>1.138<br>0.868<br>0.729 | 0.445<br>0.474<br>0.742<br>0.598<br>0.598<br>0.520<br>0.412<br>0.277<br>0.242 | 0.242<br>0.258<br>0.403<br>0.325<br>0.325<br>0.283<br>0.225<br>0.152<br>0.132 | 0.689<br>0.737<br>2.083<br>0.344<br>0.687<br>0.175<br>0.000<br>0.000<br>0.000 | 1.134<br>1.211<br>2.824<br>0.941<br>1.285<br>0.695<br>0.412<br>0.277<br>0.242 |

# A.5.8 IFR6C IFR estimate, PES=C, REC=B

#### APP TABLE 16: SUMMARY OF IFR ESTIMATE FOR IFR6C (CLASS B).

| Total                                                              | L Runoff                                                                                       | : Quater                                                                                      | rnaries I                                                                                    | 331A B31B                                                                                                        | B31C                                                                                                       |                                                                                                                |                                                                                                  |  |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| Annua                                                              | al Flows                                                                                       | (Mill. d                                                                                      | cu. m or                                                                                     | index va                                                                                                         | lues):                                                                                                     |                                                                                                                |                                                                                                  |  |
| MAR = 31.327                                                       |                                                                                                |                                                                                               |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| Dev. = 28.751                                                      |                                                                                                |                                                                                               |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| CV                                                                 |                                                                                                | =                                                                                             | 0.918                                                                                        |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| Q75                                                                |                                                                                                | =                                                                                             | 0.480                                                                                        |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| Q75/MMF = 0.184                                                    |                                                                                                |                                                                                               |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| BFI Index = 0.400                                                  |                                                                                                |                                                                                               |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| CV(JJA+JFM) Index = 2.614                                          |                                                                                                |                                                                                               |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| IFR N                                                              | lanageme                                                                                       | nt Class                                                                                      | = B                                                                                          |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| Total                                                              | L IFR                                                                                          | =                                                                                             | 9.770                                                                                        | (31.19 %                                                                                                         | MAR)                                                                                                       |                                                                                                                |                                                                                                  |  |
|                                                                    |                                                                                                | - wo                                                                                          |                                                                                              | (19.71 %                                                                                                         |                                                                                                            |                                                                                                                |                                                                                                  |  |
| Drought Lowflow = 1.978 ( 6.32 %MAR)                               |                                                                                                |                                                                                               |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| Maint. Highflow = 3.596 (11.48 %MAR)                               |                                                                                                |                                                                                               |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| Monthly Distributions (Mill. cu. m.)                               |                                                                                                |                                                                                               |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| Distribution Type : Olifants                                       |                                                                                                |                                                                                               |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
|                                                                    |                                                                                                |                                                                                               |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                |                                                                                                  |  |
| Month                                                              | n Nat                                                                                          | ural Flow                                                                                     | 1S                                                                                           |                                                                                                                  | fied Flow                                                                                                  | . ,                                                                                                            |                                                                                                  |  |
| Month                                                              |                                                                                                |                                                                                               |                                                                                              | Low                                                                                                              | flows                                                                                                      | High Flows                                                                                                     | Total Flows                                                                                      |  |
|                                                                    | Mean                                                                                           | SD                                                                                            | CV                                                                                           | Low<br>Maint.                                                                                                    | flows<br>Drought                                                                                           | High Flows<br>Maint.                                                                                           | Maint.                                                                                           |  |
| Oct                                                                | Mean<br>1.111                                                                                  | SD<br>1.617                                                                                   | CV<br>1.456                                                                                  | Low<br>Maint.<br>0.271                                                                                           | flows<br>Drought<br>0.088                                                                                  | High Flows<br>Maint.<br>0.116                                                                                  | Maint.<br>0.387                                                                                  |  |
| Oct<br>Nov                                                         | Mean<br>1.111<br>3.863                                                                         | SD<br>1.617<br>7.541                                                                          | CV<br>1.456<br>1.952                                                                         | Low<br>Maint.<br>0.271<br>0.573                                                                                  | flows<br>Drought<br>0.088<br>0.183                                                                         | High Flows<br>Maint.<br>0.116<br>0.513                                                                         | Maint.<br>0.387<br>1.086                                                                         |  |
| Oct<br>Nov<br>Dec                                                  | Mean<br>1.111<br>3.863<br>4.131                                                                | SD<br>1.617<br>7.541<br>6.057                                                                 | CV<br>1.456<br>1.952<br>1.466                                                                | Low<br>Maint.<br>0.271<br>0.573<br>0.610                                                                         | flows<br>Drought<br>0.088<br>0.183<br>0.195                                                                | High Flows<br>Maint.<br>0.116<br>0.513<br>0.549                                                                | Maint.<br>0.387<br>1.086<br>1.159                                                                |  |
| Oct<br>Nov<br>Dec<br>Jan                                           | Mean<br>1.111<br>3.863<br>4.131<br>6.641                                                       | SD<br>1.617<br>7.541<br>6.057<br>13.872                                                       | CV<br>1.456<br>1.952<br>1.466<br>2.089                                                       | Low<br>Maint.<br>0.271<br>0.573<br>0.610<br>0.955                                                                | flows<br>Drought<br>0.088<br>0.183<br>0.195<br>0.304                                                       | High Flows<br>Maint.<br>0.116<br>0.513<br>0.549<br>1.531                                                       | Maint.<br>0.387<br>1.086<br>1.159<br>2.487                                                       |  |
| Oct<br>Nov<br>Dec<br>Jan<br>Feb                                    | Mean<br>1.111<br>3.863<br>4.131<br>6.641<br>5.010                                              | SD<br>1.617<br>7.541<br>6.057<br>13.872<br>7.716                                              | CV<br>1.456<br>1.952<br>1.466<br>2.089<br>1.540                                              | Low<br>Maint.<br>0.271<br>0.573<br>0.610<br>0.955<br>0.777                                                       | flows<br>Drought<br>0.088<br>0.183<br>0.195<br>0.304<br>0.248                                              | High Flows<br>Maint.<br>0.116<br>0.513<br>0.549<br>1.531<br>0.253                                              | Maint.<br>0.387<br>1.086<br>1.159<br>2.487<br>1.030                                              |  |
| Oct<br>Nov<br>Dec<br>Jan<br>Feb<br>Mar                             | Mean<br>1.111<br>3.863<br>4.131<br>6.641<br>5.010<br>3.925                                     | SD<br>1.617<br>7.541<br>6.057<br>13.872<br>7.716<br>7.258                                     | CV<br>1.456<br>1.952<br>1.466<br>2.089<br>1.540<br>1.849                                     | Low<br>Maint.<br>0.271<br>0.573<br>0.610<br>0.955<br>0.777<br>0.762                                              | flows<br>Drought<br>0.088<br>0.183<br>0.195<br>0.304<br>0.248<br>0.243                                     | High Flows<br>Maint.<br>0.116<br>0.513<br>0.549<br>1.531<br>0.253<br>0.507                                     | Maint.<br>0.387<br>1.086<br>1.159<br>2.487<br>1.030<br>1.269                                     |  |
| Oct<br>Nov<br>Dec<br>Jan<br>Feb<br>Mar<br>Apr                      | Mean<br>1.111<br>3.863<br>4.131<br>6.641<br>5.010<br>3.925<br>2.678                            | SD<br>1.617<br>7.541<br>6.057<br>13.872<br>7.716<br>7.258<br>4.177                            | CV<br>1.456<br>1.952<br>1.466<br>2.089<br>1.540<br>1.849<br>1.560                            | Low<br>Maint.<br>0.271<br>0.573<br>0.610<br>0.955<br>0.777<br>0.762<br>0.656                                     | flows<br>Drought<br>0.088<br>0.183<br>0.195<br>0.304<br>0.248<br>0.243<br>0.209                            | High Flows<br>Maint.<br>0.116<br>0.513<br>0.549<br>1.531<br>0.253<br>0.507<br>0.127                            | Maint.<br>0.387<br>1.086<br>1.159<br>2.487<br>1.030<br>1.269<br>0.783                            |  |
| Oct<br>Nov<br>Dec<br>Jan<br>Feb<br>Mar<br>Apr<br>May               | Mean<br>1.111<br>3.863<br>4.131<br>6.641<br>5.010<br>3.925<br>2.678<br>1.448                   | SD<br>1.617<br>7.541<br>6.057<br>13.872<br>7.716<br>7.258<br>4.177<br>1.714                   | CV<br>1.456<br>1.952<br>1.466<br>2.089<br>1.540<br>1.849<br>1.560<br>1.184                   | Low<br>Maint.<br>0.271<br>0.573<br>0.610<br>0.955<br>0.777<br>0.762<br>0.656<br>0.507                            | flows<br>Drought<br>0.088<br>0.183<br>0.195<br>0.304<br>0.248<br>0.243<br>0.209<br>0.162                   | High Flows<br>Maint.<br>0.116<br>0.513<br>0.549<br>1.531<br>0.253<br>0.507<br>0.127<br>0.000                   | Maint.<br>0.387<br>1.086<br>1.159<br>2.487<br>1.030<br>1.269<br>0.783<br>0.507                   |  |
| Oct<br>Nov<br>Dec<br>Jan<br>Feb<br>Mar<br>Apr<br>May<br>Jun        | Mean<br>1.111<br>3.863<br>4.131<br>6.641<br>5.010<br>3.925<br>2.678<br>1.448<br>0.840          | SD<br>1.617<br>7.541<br>6.057<br>13.872<br>7.716<br>7.258<br>4.177<br>1.714<br>0.739          | CV<br>1.456<br>1.952<br>1.466<br>2.089<br>1.540<br>1.849<br>1.560<br>1.184<br>0.880          | Low<br>Maint.<br>0.271<br>0.573<br>0.610<br>0.955<br>0.777<br>0.762<br>0.656<br>0.507<br>0.331                   | flows<br>Drought<br>0.088<br>0.183<br>0.195<br>0.304<br>0.248<br>0.243<br>0.209<br>0.162<br>0.107          | High Flows<br>Maint.<br>0.116<br>0.513<br>0.549<br>1.531<br>0.253<br>0.507<br>0.127<br>0.000<br>0.000          | Maint.<br>0.387<br>1.086<br>1.159<br>2.487<br>1.030<br>1.269<br>0.783<br>0.507<br>0.331          |  |
| Oct<br>Nov<br>Dec<br>Jan<br>Feb<br>Mar<br>Apr<br>May<br>Jun<br>Jun | Mean<br>1.111<br>3.863<br>4.131<br>6.641<br>5.010<br>3.925<br>2.678<br>1.448<br>0.840<br>0.663 | SD<br>1.617<br>7.541<br>6.057<br>13.872<br>7.716<br>7.258<br>4.177<br>1.714<br>0.739<br>0.490 | CV<br>1.456<br>1.952<br>1.466<br>2.089<br>1.540<br>1.849<br>1.560<br>1.184<br>0.880<br>0.739 | Low<br>Maint.<br>0.271<br>0.573<br>0.610<br>0.955<br>0.777<br>0.762<br>0.656<br>0.507<br>0.331<br>0.285          | flows<br>Drought<br>0.088<br>0.183<br>0.195<br>0.304<br>0.248<br>0.243<br>0.209<br>0.162<br>0.107<br>0.093 | High Flows<br>Maint.<br>0.116<br>0.513<br>0.549<br>1.531<br>0.253<br>0.507<br>0.127<br>0.000<br>0.000<br>0.000 | Maint.<br>0.387<br>1.086<br>1.159<br>2.487<br>1.030<br>1.269<br>0.783<br>0.507<br>0.331<br>0.285 |  |
| Oct<br>Nov<br>Dec<br>Jan<br>Feb<br>Mar<br>Apr<br>May<br>Jun        | Mean<br>1.111<br>3.863<br>4.131<br>6.641<br>5.010<br>3.925<br>2.678<br>1.448<br>0.840          | SD<br>1.617<br>7.541<br>6.057<br>13.872<br>7.716<br>7.258<br>4.177<br>1.714<br>0.739          | CV<br>1.456<br>1.952<br>1.466<br>2.089<br>1.540<br>1.849<br>1.560<br>1.184<br>0.880          | Low<br>Maint.<br>0.271<br>0.573<br>0.610<br>0.955<br>0.777<br>0.762<br>0.762<br>0.507<br>0.331<br>0.285<br>0.246 | flows<br>Drought<br>0.088<br>0.183<br>0.195<br>0.304<br>0.248<br>0.243<br>0.209<br>0.162<br>0.107<br>0.093 | High Flows<br>Maint.<br>0.116<br>0.513<br>0.549<br>1.531<br>0.253<br>0.507<br>0.127<br>0.000<br>0.000          | Maint.<br>0.387<br>1.086<br>1.159<br>2.487<br>1.030<br>1.269<br>0.783<br>0.507<br>0.331          |  |



#### APP TABLE 17: SUMMARY OF IFR ESTIMATE FOR IFR6C (CLASS C).

| Summary of                                 | IFR estima | ate for ( | Quaternar | y Catchme | ent Area : | × ×         |  |
|--------------------------------------------|------------|-----------|-----------|-----------|------------|-------------|--|
| Total Runoff : Quaternaries B31A B31B B31C |            |           |           |           |            |             |  |
| Annual Flow                                | s (Mill. d | cu. m or  | index va  | lues):    |            |             |  |
| MAR                                        | =          | 31.327    |           |           |            |             |  |
| S.Dev.                                     | =          | 28.751    |           |           |            |             |  |
| CV                                         | =          | 0.918     |           |           |            |             |  |
| Q75                                        | =          | 0.480     |           |           |            |             |  |
| Q75/MMF                                    | =          | 0.184     |           |           |            |             |  |
| BFI Index                                  | =          | 0.400     |           |           |            |             |  |
| CV (JJA+JFM)                               | Index =    | 2.614     |           |           |            |             |  |
| IFR Managem                                | ent Class  | = C       |           |           |            |             |  |
| Total IFR                                  | =          | 7.245     | (23.13 %  | MAR)      |            |             |  |
| Maint. Lowf                                | low =      | 3.649     | (11.65 %  | MAR)      |            |             |  |
| Drought Low                                | flow =     | 1.978     | ( 6.32 %  | MAR)      |            |             |  |
| Maint. Highflow = 3.596 (11.48 %MAR)       |            |           |           |           |            |             |  |
| Monthly Distributions (Mill. cu. m.)       |            |           |           |           |            |             |  |
| Distribution Type : Olifants               |            |           |           |           |            |             |  |
| Month Na                                   | tural Flow | VS        | Modi      | fied Flow | /s (IFR)   |             |  |
|                                            |            |           | Low       | flows     | High Flows | Total Flows |  |
| Mean                                       | SD         | CV        | Maint.    | Drought   | Maint.     | Maint.      |  |
|                                            | 1.617      | 1.456     | 0.162     | 0.088     | 0.116      | 0.278       |  |
| Nov 3.863                                  | 7.541      | 1.952     | 0.338     | 0.183     | 0.513      | 0.851       |  |
| Dec 4.131                                  | 6.057      | 1.466     | 0.360     | 0.195     | 0.549      | 0.909       |  |
| Jan 6.641                                  | 13.872     | 2.089     | 0.562     | 0.304     | 1.531      | 2.093       |  |
| Feb 5.010                                  | 7.716      | 1.540     | 0.458     | 0.248     | 0.253      | 0.711       |  |
| Mar 3.925                                  |            | 1.849     |           |           | 0.507      | 0.956       |  |
| Apr 2.678                                  | 4.177      | 1.560     | 0.387     | 0.209     | 0.127      | 0.514       |  |
| May 1.448                                  | 1.714      | 1.184     | 0.299     | 0.162     | 0.000      | 0.299       |  |
| Jun 0.840                                  |            |           |           |           | 0.000      | 0.197       |  |
| Jul 0.663                                  | 0.490      | 0.739     | 0.170     | 0.093     | 0.000      | 0.170       |  |
| Aug 0.557                                  |            | 0.746     |           |           | 0.000      | 0.147       |  |
| Sep 0.461                                  | 0.343      | 0.745     | 0.120     | 0.066     | 0.000      | 0.120       |  |
|                                            |            |           |           |           |            |             |  |

#### A.5.9 IFR7 IFR estimate: PES=E, REC=D

#### APP TABLE 18: SUMMARY OF IFR ESTIMATE FOR IFR7 (CLASS D).

| Summary of                                                                                                                                                     | IFR estimation                                                                                                                  | ate for (                                                                                    | Quaternar                                                                                                        | y Catchm                                                                                                   | ent Area:                                                                                                       |                                                                                                      |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Total Runof                                                                                                                                                    | f : REGIO                                                                                                                       | N I B510                                                                                     | 2                                                                                                                |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| Annual Flow                                                                                                                                                    | s (Mill.                                                                                                                        | cu. m or                                                                                     | index va                                                                                                         | lues):                                                                                                     |                                                                                                                 |                                                                                                      |  |  |
| MAR                                                                                                                                                            | =                                                                                                                               | 704.793                                                                                      |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| S.Dev.                                                                                                                                                         | =                                                                                                                               | 441.756                                                                                      |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| CV                                                                                                                                                             | =                                                                                                                               | 0.627                                                                                        |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| Q75                                                                                                                                                            | =                                                                                                                               | 16.650                                                                                       |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| Q75/MMF                                                                                                                                                        | =                                                                                                                               | 0.283                                                                                        |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| BFI Index                                                                                                                                                      | =                                                                                                                               | 0.474                                                                                        |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| CV (JJA+JFM)                                                                                                                                                   | Index =                                                                                                                         | 1.742                                                                                        |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| IFR Managem                                                                                                                                                    | IFR Management Class = D                                                                                                        |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| Total IFR                                                                                                                                                      |                                                                                                                                 |                                                                                              | (12.68 %                                                                                                         | ,                                                                                                          |                                                                                                                 |                                                                                                      |  |  |
| Maint. Lowf                                                                                                                                                    |                                                                                                                                 |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| Drought Low                                                                                                                                                    | flow =                                                                                                                          | 27.073                                                                                       | ( 3.84 %                                                                                                         | MAR)                                                                                                       |                                                                                                                 |                                                                                                      |  |  |
| Maint. Highflow = 62.313 ( 8.84 %MAR)                                                                                                                          |                                                                                                                                 |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| Monthly Dis                                                                                                                                                    |                                                                                                                                 |                                                                                              | cu. m.)                                                                                                          |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| Dictributio                                                                                                                                                    | n Trino . /                                                                                                                     | $21 + f_{2} + c_{1}$                                                                         |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
| Distributio                                                                                                                                                    |                                                                                                                                 |                                                                                              |                                                                                                                  |                                                                                                            |                                                                                                                 |                                                                                                      |  |  |
|                                                                                                                                                                | tural Flo                                                                                                                       |                                                                                              |                                                                                                                  | ied Flow                                                                                                   | · ·                                                                                                             |                                                                                                      |  |  |
| Month Na                                                                                                                                                       | tural Flo                                                                                                                       | WS                                                                                           | Low                                                                                                              | flows                                                                                                      | High Flows                                                                                                      | Total Flows                                                                                          |  |  |
| Month Na<br>Mean                                                                                                                                               | tural Flor                                                                                                                      | ws<br>CV                                                                                     | Low<br>Maint.                                                                                                    | flows<br>Drought                                                                                           | High Flows<br>Maint.                                                                                            | Maint.                                                                                               |  |  |
| Month Na<br>Mean<br>Oct 28.743                                                                                                                                 | SD<br>51.775                                                                                                                    | ws<br>CV<br>1.801                                                                            | Low<br>Maint.<br>1.205                                                                                           | flows<br>Drought<br>1.205                                                                                  | High Flows<br>Maint.<br>0.514                                                                                   | Maint.<br>1.719                                                                                      |  |  |
| Month Na<br>Mean<br>Oct 28.743<br>Nov 87.269                                                                                                                   | tural Flor<br>SD<br>51.775<br>110.527                                                                                           | CV<br>1.801<br>1.267                                                                         | Low<br>Maint.<br>1.205<br>2.462                                                                                  | flows<br>Drought<br>1.205<br>2.462                                                                         | High Flows<br>Maint.<br>0.514<br>2.834                                                                          | Maint.<br>1.719<br>5.296                                                                             |  |  |
| Month Na<br>Mean<br>Oct 28.743<br>Nov 87.269<br>Dec 90.983                                                                                                     | tural Flov<br>SD<br>51.775<br>110.527<br>86.371                                                                                 | CV<br>1.801<br>1.267<br>0.949                                                                | Low<br>Maint.<br>1.205<br>2.462<br>2.544                                                                         | flows<br>Drought<br>1.205<br>2.462<br>2.544                                                                | High Flows<br>Maint.<br>0.514<br>2.834<br>7.828                                                                 | Maint.<br>1.719<br>5.296<br>10.373                                                                   |  |  |
| Month Na<br>Mean<br>Oct 28.743<br>Nov 87.269<br>Dec 90.983<br>Jan 127.861                                                                                      | tural Flor<br>SD<br>51.775<br>110.527<br>86.371<br>163.477                                                                      | CV<br>1.801<br>1.267<br>0.949<br>1.279                                                       | Low<br>Maint.<br>1.205<br>2.462<br>2.544<br>3.616                                                                | flows<br>Drought<br>1.205<br>2.462<br>2.544<br>3.616                                                       | High Flows<br>Maint.<br>0.514<br>2.834<br>7.828<br>8.703                                                        | Maint.<br>1.719<br>5.296<br>10.373<br>12.318                                                         |  |  |
| Month Na<br>Mean<br>Oct 28.743<br>Nov 87.269<br>Dec 90.983<br>Jan 127.861<br>Feb 120.158                                                                       | SD<br>51.775<br>110.527<br>86.371<br>163.477<br>171.489                                                                         | CV<br>1.801<br>1.267<br>0.949<br>1.279<br>1.427                                              | Low<br>Maint.<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629                                                       | flows<br>Drought<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629                                              | High Flows<br>Maint.<br>0.514<br>2.834<br>7.828<br>8.703<br>33.703                                              | Maint.<br>1.719<br>5.296<br>10.373<br>12.318<br>37.331                                               |  |  |
| Month Na<br>Mean<br>Oct 28.743<br>Nov 87.269<br>Dec 90.983<br>Jan 127.861                                                                                      | SD<br>51.775<br>110.527<br>86.371<br>163.477<br>171.489                                                                         | CV<br>1.801<br>1.267<br>0.949<br>1.279<br>1.427<br>1.108                                     | Low<br>Maint.<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629<br>3.214                                              | flows<br>Drought<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629<br>3.214                                     | High Flows<br>Maint.<br>0.514<br>2.834<br>7.828<br>8.703<br>33.703<br>7.720                                     | Maint.<br>1.719<br>5.296<br>10.373<br>12.318<br>37.331                                               |  |  |
| Month Na<br>Mean<br>Oct 28.743<br>Nov 87.269<br>Dec 90.983<br>Jan 127.861<br>Feb 120.158<br>Mar 84.888<br>Apr 53.370                                           | tural Flor<br>SD<br>51.775<br>110.527<br>86.371<br>163.477<br>171.489<br>94.092<br>46.491                                       | CV<br>1.801<br>1.267<br>0.949<br>1.279<br>1.427<br>1.108<br>0.871                            | Low<br>Maint.<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629<br>3.214<br>2.462                                     | flows<br>Drought<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629                                              | High Flows<br>Maint.<br>0.514<br>2.834<br>7.828<br>8.703<br>33.703<br>7.720                                     | Maint.<br>1.719<br>5.296<br>10.373<br>12.318<br>37.331<br>10.934                                     |  |  |
| Month Na<br>Mean<br>Oct 28.743<br>Nov 87.269<br>Dec 90.983<br>Jan 127.861<br>Feb 120.158<br>Mar 84.888<br>Apr 53.370<br>May 35.699                             | tural Flor<br>SD<br>51.775<br>110.527<br>86.371<br>163.477<br>171.489<br>94.092<br>46.491<br>28.749                             | CV<br>1.801<br>1.267<br>0.949<br>1.279<br>1.427<br>1.108<br>0.871<br>0.805                   | Low<br>Maint.<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629<br>3.214<br>2.462                                     | flows<br>Drought<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629<br>3.214                                     | High Flows<br>Maint.<br>0.514<br>2.834<br>7.828<br>8.703<br>33.703<br>7.720<br>1.012                            | Maint.<br>1.719<br>5.296<br>10.373<br>12.318<br>37.331<br>10.934<br>3.475                            |  |  |
| Month Na<br>Mean<br>Oct 28.743<br>Nov 87.269<br>Dec 90.983<br>Jan 127.861<br>Feb 120.158<br>Mar 84.888<br>Apr 53.370<br>May 35.699<br>Jun 25.027               | tural Flor<br>SD<br>51.775<br>110.527<br>86.371<br>163.477<br>171.489<br>94.092<br>46.491<br>28.749<br>13.993                   | CV<br>1.801<br>1.267<br>0.949<br>1.279<br>1.427<br>1.108<br>0.871<br>0.805<br>0.559          | Low<br>Maint.<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629<br>3.214<br>2.462<br>2.411<br>1.814                   | flows<br>Drought<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629<br>3.214<br>2.462<br>2.411<br>1.814          | High Flows<br>Maint.<br>0.514<br>2.834<br>7.828<br>8.703<br>33.703<br>7.720<br>1.012<br>0.000<br>0.000          | Maint.<br>1.719<br>5.296<br>10.373<br>12.318<br>37.331<br>10.934<br>3.475<br>2.411<br>1.814          |  |  |
| Month Na<br>Mean<br>Oct 28.743<br>Nov 87.269<br>Dec 90.983<br>Jan 127.861<br>Feb 120.158<br>Mar 84.888<br>Apr 53.370<br>May 35.699<br>Jun 25.027<br>Jul 19.823 | tural Flor<br>SD<br>51.775<br>110.527<br>86.371<br>163.477<br>171.489<br>94.092<br>46.491<br>28.749<br>13.993<br>8.581          | CV<br>1.801<br>1.267<br>0.949<br>1.279<br>1.427<br>1.108<br>0.871<br>0.805<br>0.559<br>0.433 | Low<br>Maint.<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629<br>3.214<br>2.462<br>2.411<br>1.814<br>1.473          | flows<br>Drought<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629<br>3.214<br>2.462<br>2.411<br>1.814<br>1.473 | High Flows<br>Maint.<br>0.514<br>2.834<br>7.828<br>8.703<br>33.703<br>7.720<br>1.012<br>0.000<br>0.000<br>0.000 | Maint.<br>1.719<br>5.296<br>10.373<br>12.318<br>37.331<br>10.934<br>3.475<br>2.411<br>1.814<br>1.473 |  |  |
| Month Na<br>Mean<br>Oct 28.743<br>Nov 87.269<br>Dec 90.983<br>Jan 127.861<br>Feb 120.158<br>Mar 84.888<br>Apr 53.370<br>May 35.699<br>Jun 25.027               | tural Flor<br>SD<br>51.775<br>110.527<br>86.371<br>163.477<br>171.489<br>94.092<br>46.491<br>28.749<br>13.993<br>8.581<br>6.866 | CV<br>1.801<br>1.267<br>0.949<br>1.279<br>1.427<br>1.108<br>0.871<br>0.805<br>0.559<br>0.433 | Low<br>Maint.<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629<br>3.214<br>2.462<br>2.411<br>1.814<br>1.473<br>1.205 | flows<br>Drought<br>1.205<br>2.462<br>2.544<br>3.616<br>3.629<br>3.214<br>2.462<br>2.411<br>1.814          | High Flows<br>Maint.<br>0.514<br>2.834<br>7.828<br>8.703<br>33.703<br>7.720<br>1.012<br>0.000<br>0.000<br>0.000 | Maint.<br>1.719<br>5.296<br>10.373<br>12.318<br>37.331<br>10.934<br>3.475<br>2.411<br>1.814<br>1.473 |  |  |



#### A.5.10 IFR8 IFR estimate:: PES=D, REC=D

#### APP TABLE 19: SUMMARY OF IFR ESTIMATE FOR IFR8 (CLASS D) (differs markedly from the table in the text). Total Runoff : REGION I B71B Annual Flows (Mill. cu. m or index values): MAR = 834.533 S.Dev. = 523.136 CV = 0.627 Q75 17.470 = Q75/MMF = 0.251 BFI Index = 0.450 CV(JJA+JFM) Index = 1.728 IFR Management Class = D IFR = D Total IFR = 127.047 (15.22 %MAR) Maint. Lowflow = 35.850 (4.30 %MAR) Drought Lowflow = 35.850 (4.30 %MAR) Maint. Highflow = 91.197 (10.93 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type : Olifants Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows CV SD Maint. Drought Maint. Maint. Mean Oct 31.672 59.823 1.889 2.036 2.036 1.057 3.093 Nov 105.157 129.359 1.230 3.266 3.266 3.944 7.210 Dec 115.985 103.084 0.889 3.509 3.509 8.668 12.177 Jan 161.971 204.051 1.260 Feb 146.830 207.200 1.411 4.500 4.500 4.355 21.264 25.764 4.355 48.086 52.441 Mar 98.744 111.023 1.124 3.830 3.830 7.211 11.041 Apr 58.417 51.701 0.885 3.111 3.111 0.968 4.078 2.866 May 37.235 29.365 0.789 2.866 0.000 2.866 2.385 0.550 0.000 Jun 25.831 14.208 2.385 2.385 Jul 20.481 8.749 0.427 2.196 2.196 0.000 2.196 Aug 16.934 6.978 0.412 1.982 1.982 0.000 1.982 Sep 15.277 8.502 0.557 1.814 1.814 0.000 1.814

#### A.5.11 IFR9 IFR estimate: PES=D, REC=D

| APP TABLE 20: SUMMARY OF IFR ESTIMATE FOR IFR9 (CLASS |                                      |        |        |          |         |        |             |  |  |
|-------------------------------------------------------|--------------------------------------|--------|--------|----------|---------|--------|-------------|--|--|
| Total Runoff : REGION I B41H                          |                                      |        |        |          |         |        |             |  |  |
| Annual Flows (Mill. cu. m or index values):           |                                      |        |        |          |         |        |             |  |  |
| MAR = 171.580                                         |                                      |        |        |          |         |        |             |  |  |
| IFR Management Class = D                              |                                      |        |        |          |         |        |             |  |  |
| Total IFR = 26.031 (15.17 %MAR)                       |                                      |        |        |          |         |        |             |  |  |
| Maint. Lowflow = 13.667 ( 7.97 %MAR)                  |                                      |        |        |          |         |        |             |  |  |
| Droug                                                 | Drought Lowflow = 13.667 (7.97 %MAR) |        |        |          |         |        |             |  |  |
| Maint                                                 | . Highfl                             | - wo   | 12.364 | ( 7.21 % | MAR)    |        |             |  |  |
| Month                                                 | Monthly Distributions (Mill. cu. m.) |        |        |          |         |        |             |  |  |
| Distribution Type : Olifants                          |                                      |        |        |          |         |        |             |  |  |
| Month Natural Flows Modified Flows (IFR)              |                                      |        |        |          |         |        |             |  |  |
|                                                       |                                      |        |        |          |         |        | Total Flows |  |  |
|                                                       | Mean                                 | SD     | CV     | Maint.   | Drought | Maint. | Maint.      |  |  |
| Oct                                                   | 5.372                                | 5.571  | 1.037  | 0.750    | 0.750   | 0.549  | 1.299       |  |  |
| Nov                                                   | 19.691                               |        |        |          |         | 0.503  | 1.696       |  |  |
| Dec                                                   | 25.441                               | 22.122 | 0.870  | 1.393    |         |        | 2.799       |  |  |
| Jan                                                   | 36.361                               | 41.657 | 1.146  | 1.821    | 1.821   | 5.119  | 6.941       |  |  |
| Feb                                                   | 30.950                               | 35.963 | 1.162  | 1.693    | 1.693   | 2.132  | 3.826       |  |  |
| Mar                                                   | 20.719                               |        | 0.974  | 1.500    | 1.500   |        |             |  |  |
| 1                                                     | 13.546                               |        |        | 1.296    | 1.296   | 0.480  | 1.776       |  |  |
| -                                                     |                                      | 6.853  |        | 1.071    | 1.071   | 0.000  | 1.071       |  |  |
| Jun                                                   | 4.096                                | 2.595  |        |          |         |        | 0.829       |  |  |
| Jul                                                   | 3.105                                | 1.902  | 0.613  | 0.750    | 0.750   | 0.000  | 0.750       |  |  |
| Aug                                                   | 2.542                                | 1.589  | 0.625  | 0.696    | 0.696   | 0.000  | 0.696       |  |  |
| Sep                                                   | 2.454                                | 1.842  | 0.750  | 0.674    | 0.674   | 0.000  | 0.674       |  |  |

D).



# A.5.12 IFR10 IFR estimate: PES=D, REC=D

APP TABLE 21: SUMMARY OF IFR ESTIMATE FOR IFR10 (CLASS D).

| Annual Flows (Mill. cu. m or index values):<br>MAR = 406.231<br>IFR Management Class = D<br>Total IFR = 49.172 (12.10 %MAR)<br>Maint. Lowflow = 30.179 ( 7.43 %MAR)<br>Drought Lowflow = 30.179 ( 7.43 %MAR)<br>Maint. Highflow = 18.993 ( 4.68 %MAR) |   |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|
| IFR Management Class = D<br>Total IFR = 49.172 (12.10 %MAR)<br>Maint. Lowflow = 30.179 ( 7.43 %MAR)<br>Drought Lowflow = 30.179 ( 7.43 %MAR)                                                                                                          |   |  |  |  |  |  |  |
| Total IFR       =       49.172 (12.10 %MAR)         Maint. Lowflow       =       30.179 (7.43 %MAR)         Drought Lowflow       =       30.179 (7.43 %MAR)                                                                                          |   |  |  |  |  |  |  |
| Maint. Lowflow = 30.179 ( 7.43 %MAR)<br>Drought Lowflow = 30.179 ( 7.43 %MAR)                                                                                                                                                                         |   |  |  |  |  |  |  |
| Drought Lowflow = 30.179 ( 7.43 %MAR)                                                                                                                                                                                                                 |   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                       |   |  |  |  |  |  |  |
| Maint. Highflow = 18.993 ( 4.68 %MAR)                                                                                                                                                                                                                 |   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                       |   |  |  |  |  |  |  |
| Monthly Distributions (Mill. cu. m.)                                                                                                                                                                                                                  |   |  |  |  |  |  |  |
| Distribution Type : Olifants                                                                                                                                                                                                                          |   |  |  |  |  |  |  |
| Month Natural Flows Modified Flows (IFR)                                                                                                                                                                                                              |   |  |  |  |  |  |  |
| Low flows High Flows Total Flows                                                                                                                                                                                                                      | 3 |  |  |  |  |  |  |
| Mean SD CV Maint. Drought Maint. Maint.                                                                                                                                                                                                               |   |  |  |  |  |  |  |
| Oct 11.945 12.688 1.062 1.607 1.607 0.847 2.454                                                                                                                                                                                                       |   |  |  |  |  |  |  |
| Nov 46.098 48.665 1.056 2.592 2.592 0.746 3.338                                                                                                                                                                                                       |   |  |  |  |  |  |  |
| Dec 61.478 50.513 0.822 3.161 3.161 1.938 5.098                                                                                                                                                                                                       |   |  |  |  |  |  |  |
| Jan 79.709 75.111 0.942 3.750 3.750 10.857 14.607                                                                                                                                                                                                     |   |  |  |  |  |  |  |
| Feb         76.887         103.259         1.343         3.871         3.871         1.876         5.746                                                                                                                                              |   |  |  |  |  |  |  |
| Mar 50.784 48.486 0.955 3.375 3.375 1.972 5.347                                                                                                                                                                                                       |   |  |  |  |  |  |  |
| Apr 29.979 22.369 0.746 2.592 2.592 0.757 3.349                                                                                                                                                                                                       |   |  |  |  |  |  |  |
| May 16.999 10.877 0.640 2.384 2.384 0.000 2.384                                                                                                                                                                                                       |   |  |  |  |  |  |  |
| Jun 10.655 4.723 0.443 1.918 1.918 0.000 1.918                                                                                                                                                                                                        |   |  |  |  |  |  |  |
| Jul 8.266 3.416 0.413 1.768 1.768 0.000 1.768                                                                                                                                                                                                         |   |  |  |  |  |  |  |
| Aug 6.847 2.957 0.432 1.607 1.607 0.000 1.607                                                                                                                                                                                                         |   |  |  |  |  |  |  |
| Sep 6.585 3.873 0.588 1.555 1.555 0.000 1.555                                                                                                                                                                                                         |   |  |  |  |  |  |  |

# A.5.13 IFR11 IFR estimate: PES=E, REC=D

APP TABLE 22: SUMMARY OF IFR ESTIMATE FOR IFR11 (CLASS D).

| Total Runoff : Quaternaries B71H      |          |           |         |           |           |            |             |  |
|---------------------------------------|----------|-----------|---------|-----------|-----------|------------|-------------|--|
| Annua                                 | l Flows  | (Mill. c  | u. m or | index val | Lues):    |            |             |  |
| MAR                                   |          | = 1       | 393.158 |           |           |            |             |  |
| IFR M                                 | anagemer | nt Class  | = D     |           |           |            |             |  |
| Total                                 | IFR      | =         | 117.682 | ( 8.45 %N | 1AR)      |            |             |  |
| Maint. Lowflow = 83.398 ( 5.99 %MAR)  |          |           |         |           |           |            |             |  |
| Drought Lowflow = 83.398 ( 5.99 %MAR) |          |           |         |           |           |            |             |  |
| Maint                                 | . Highf  | Low =     | 34.284  | ( 2.46 %  | 1AR)      |            |             |  |
| Month                                 | ly Dist  | ributions | (Mill.  | cu. m.)   |           |            |             |  |
| Distribution Type : Olifants          |          |           |         |           |           |            |             |  |
| Month                                 | Natı     | iral Flow | S       | Modif     | fied Flow | vs (IFR)   |             |  |
|                                       |          |           |         | Low f     | flows     | High Flows | Total Flows |  |
|                                       | Mean     | SD        | CV      | Maint.    | Drought   | Maint.     | Maint.      |  |
| Oct                                   | 42.906   | 71.137    | 1.658   | 3.884     | 3.884     | 0.913      | 4.797       |  |
| Nov                                   | 172.644  | 203.010   | 1.176   | 7.777     | 7.777     | 1.244      | 9.021       |  |
| Dec                                   | 192.606  | 173.812   | 0.902   | 8.572     | 8.572     | 3.049      | 11.620      |  |
| Jan                                   | 270.573  | 312.940   | 1.157   | 11.251    | 11.251    | 5.589      | 16.840      |  |
| Feb                                   | 265.590  | 353.883   | 1.332   | 11.855    | 11.855    | 17.197     | 29.052      |  |
| Mar                                   | 187.048  | 199.670   | 1.067   | 10.447    | 10.447    | 4.736      | 15.183      |  |
| Apr                                   | 104.327  | 98.674    | 0.946   | 7.777     | 7.777     | 1.555      | 9.332       |  |
| May                                   | 57.043   | 43.896    | 0.770   | 6.429     | 6.429     | 0.000      | 6.429       |  |
| Jun                                   | 35.169   | 20.399    | 0.580   | 4.666     | 4.666     | 0.000      | 4.666       |  |
| Jul                                   | 26.193   | 13.612    | 0.520   | 4.018     | 4.018     | 0.000      | 4.018       |  |
| Aug                                   | 20.552   | 11.099    | 0.540   | 3.482     | 3.482     | 0.000      | 3.482       |  |
| Sep                                   | 18.507   | 13.567    | 0.733   | 3.240     | 3.240     | 0.000      | 3.240       |  |
|                                       |          |           |         |           |           |            |             |  |



# A.5.14 IFR12 IFR estimate: PES=B, REC=B

APP TABLE 23: SUMMARY OF IFR ESTIMATE FOR IFR12 (CLASS B).

| Annual Flows (Mill. cu. m or index values):<br>MAR = 383.703<br>IFR Management Class = B<br>Total IFR = 132.325 (34.49 %MAR)<br>Maint. Lowflow = 107.266 (27.96 %MAR)<br>Drought Lowflow = 33.130 ( 8.63 %MAR)<br>Maint. Highflow = 25.058 ( 6.53 %MAR) |   |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|
| IFR Management Class = B<br>Total IFR = 132.325 (34.49 %MAR)<br>Maint. Lowflow = 107.266 (27.96 %MAR)<br>Drought Lowflow = 33.130 ( 8.63 %MAR)<br>Maint. Highflow = 25.058 ( 6.53 %MAR)                                                                 |   |  |  |  |  |  |  |
| Total IFR       =       132.325 (34.49 %MAR)         Maint. Lowflow       =       107.266 (27.96 %MAR)         Drought Lowflow       =       33.130 (8.63 %MAR)         Maint. Highflow       =       25.058 (6.53 %MAR)                                |   |  |  |  |  |  |  |
| Maint. Lowflow = 107.266 (27.96 %MAR)<br>Drought Lowflow = 33.130 ( 8.63 %MAR)<br>Maint. Highflow = 25.058 ( 6.53 %MAR)                                                                                                                                 |   |  |  |  |  |  |  |
| Drought Lowflow = 33.130 ( 8.63 %MAR)<br>Maint. Highflow = 25.058 ( 6.53 %MAR)                                                                                                                                                                          |   |  |  |  |  |  |  |
| Maint. Highflow = 25.058 ( 6.53 %MAR)                                                                                                                                                                                                                   |   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                         |   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                         |   |  |  |  |  |  |  |
| Monthly Distributions (Mill. cu. m.)                                                                                                                                                                                                                    |   |  |  |  |  |  |  |
| Distribution Type : E.Escarp                                                                                                                                                                                                                            |   |  |  |  |  |  |  |
| Month Natural Flows Modified Flows (IFR)                                                                                                                                                                                                                |   |  |  |  |  |  |  |
| Low flows High Flows Total Flow                                                                                                                                                                                                                         | s |  |  |  |  |  |  |
| Mean SD CV Maint. Drought Maint. Maint.                                                                                                                                                                                                                 |   |  |  |  |  |  |  |
| Oct 12.111 3.697 0.305 5.625 2.143 1.229 6.853                                                                                                                                                                                                          |   |  |  |  |  |  |  |
| Nov 18.942 10.224 0.540 5.962 2.074 2.395 8.357                                                                                                                                                                                                         |   |  |  |  |  |  |  |
| Dec 32.152 51.930 1.615 7.232 2.411 3.826 11.058                                                                                                                                                                                                        |   |  |  |  |  |  |  |
| Jan 52.610 69.414 1.319 10.178 2.946 4.261 14.439                                                                                                                                                                                                       |   |  |  |  |  |  |  |
| Feb 78.912 113.095 1.433 13.790 3.871 7.904 21.694                                                                                                                                                                                                      |   |  |  |  |  |  |  |
| Mar 69.638 99.392 1.427 14.463 4.018 3.764 18.227                                                                                                                                                                                                       |   |  |  |  |  |  |  |
| Apr 38.518 48.771 1.266 11.923 3.370 1.680 13.603                                                                                                                                                                                                       |   |  |  |  |  |  |  |
| May 22.696 8.628 0.380 9.642 2.946 0.000 9.642                                                                                                                                                                                                          |   |  |  |  |  |  |  |
| Jun 17.813 5.121 0.287 8.035 2.592 0.000 8.035                                                                                                                                                                                                          |   |  |  |  |  |  |  |
| Jul 15.061 3.772 0.250 7.500 2.411 0.000 7.500                                                                                                                                                                                                          |   |  |  |  |  |  |  |
| Aug 12.878 3.143 0.244 6.696 2.277 0.000 6.696                                                                                                                                                                                                          |   |  |  |  |  |  |  |
| Sep 12.372 6.839 0.553 6.221 2.074 0.000 6.221                                                                                                                                                                                                          |   |  |  |  |  |  |  |

# A.5.15 IFR13 IFR estimate: PES=C, REC=B

APP TABLE 24: SUMMARY OF IFR ESTIMATE FOR IFR13 (CLASS B).

| Total Runoff : REGION I B72D<br>Annual Flows (Mill. cu. m or index values):<br>MAR = 1845.375<br>IFR Management Class = B |                              |           |       |          |         |            |             |  |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|-------|----------|---------|------------|-------------|--|
|                                                                                                                           | 2                            |           |       | (00 57 0 |         |            |             |  |
| Total IFR = 434.864 (23.57 %MAR)                                                                                          |                              |           |       |          |         |            |             |  |
| Maint. Lowflow = 358.469 (19.43 %MAR)<br>Drought Lowflow = 110.686 ( 6.00 %MAR)                                           |                              |           |       |          |         |            |             |  |
| -                                                                                                                         | ·                            |           |       |          |         |            |             |  |
|                                                                                                                           | -                            |           |       | ( 4.14 % | MAR)    |            |             |  |
|                                                                                                                           | -                            | ributions |       | cu. m.)  |         |            |             |  |
|                                                                                                                           | Distribution Type : Olifants |           |       |          |         |            |             |  |
| Month                                                                                                                     | n Natı                       | ıral Flow | s     | Modi     |         |            |             |  |
|                                                                                                                           |                              |           |       | Low      | flows   | High Flows | Total Flows |  |
|                                                                                                                           | Mean                         | SD        | CV    | Maint.   | Drought | Maint.     | Maint.      |  |
| Oct                                                                                                                       | 61.253                       | 75.797    | 1.237 | 21.427   | 5.892   | 1.089      | 22.516      |  |
| Nov                                                                                                                       | 181.231                      | 185.450   | 1.023 | 27.475   | 8.294   | 8.068      | 35.543      |  |
| Dec                                                                                                                       | 227.664                      | 196.301   | 0.862 | 31.337   | 9.642   | 6.641      | 37.977      |  |
| Jan                                                                                                                       | 333.077                      | 329.630   | 0.990 | 39.908   | 13.124  | 9.235      | 49.143      |  |
| Feb                                                                                                                       | 354.439                      | 436.118   | 1.230 | 43.545   | 14.515  | 40.870     | 84.415      |  |
| Mar                                                                                                                       | 262.207                      | 296.009   | 1.129 | 41.247   | 13.660  | 9.133      | 50.379      |  |
| Apr                                                                                                                       | 144.298                      | 121.407   | 0.841 | 32.400   | 10.109  | 1.361      | 33.760      |  |
| May                                                                                                                       | 87.083                       | 44.799    | 0.514 | 29.462   | 9.106   | 0.000      | 29.462      |  |
| Jun                                                                                                                       | 62.132                       | 22.756    | 0.366 | 25.401   | 7.517   | 0.000      | 25.401      |  |
| Jul                                                                                                                       | 50.335                       | 16.058    | 0.319 | 23.570   | 6.964   | 0.000      | 23.570      |  |
| Aug                                                                                                                       | 42.282                       | 13.082    | 0.309 | 21.963   | 6.160   | 0.000      | 21.963      |  |
| Sep                                                                                                                       | 39.375                       | 16.456    | 0.418 | 20.736   | 5.702   | 0.000      | 20.736      |  |
|                                                                                                                           |                              |           |       |          |         |            |             |  |



#### APP TABLE 25: SUMMARY OF IFR ESTIMATE FOR IFR13 (CLASS C).

| Total | MAR         | ION I B72D<br>(Mill. cu. n<br>= 1845<br>nt Class = C | .375 | ndex val | ues):     |        | , ,         |
|-------|-------------|------------------------------------------------------|------|----------|-----------|--------|-------------|
|       | -           | = 284                                                |      | 15 /1 9N | ואס       |        |             |
|       |             | -204<br>ow = 208                                     |      |          |           |        |             |
|       |             | 10w = 200                                            | •    |          | ,         |        |             |
|       | 2           |                                                      | •    |          | ,         |        |             |
|       | -           | low = 76                                             |      |          | IAR)      |        |             |
|       | -           | ributions (M                                         |      | u. m.)   |           |        |             |
|       |             | Type : Olif                                          |      |          |           |        |             |
|       | Month Nat   | ural Flows                                           |      |          | ied Flows |        |             |
|       |             |                                                      |      |          |           |        | Total Flows |
|       |             | SD C                                                 |      |          | 2         |        |             |
|       |             | 75.797 1                                             |      |          |           |        |             |
|       | Nov 181.231 | 185.450 1                                            | .023 | 15.941   | 8.294     | 8.068  | 24.008      |
|       | Dec 227.664 | 196.301 0                                            | .862 | 18.213   | 9.642     | 6.641  | 24.853      |
|       | Jan 333.077 | 329.630 0                                            | .990 | 23.034   | 13.124    | 9.235  | 32.269      |
|       | Feb 354.439 | 436.118 1                                            | .230 | 25.256   | 14.515    | 40.870 | 66.126      |
|       | Mar 262.207 | 296.009 1                                            | .129 | 23.837   | 13.660    | 9.133  | 32.970      |
|       | Apr 144.298 | 121.407 0                                            | .841 | 18.792   | 10.109    | 1.361  | 20.153      |
|       | May 87.083  | 44.799 0                                             | .514 | 17.088   | 9.106     | 0.000  | 17.088      |
|       | Jun 62.132  | 22.756 0                                             | .366 | 14.774   | 7.517     | 0.000  | 14.774      |
|       | Jul 50.335  | 16.058 0                                             | .319 | 13.660   | 6.964     | 0.000  | 13.660      |
|       |             | 13.082 0                                             |      |          |           |        |             |
|       | -           | 16.456 0                                             |      |          |           |        |             |
|       | =           |                                                      |      |          |           |        |             |

# A.5.16 IFR14A IFR estimate: PES=C, REC=C

#### APP TABLE 26: SUMMARY OF IFR ESTIMATE FOR IFR14A (CLASS C).

| Annua<br>MAR<br>IFR M<br>Total<br>Maint<br>Droug<br>Maint<br>Month | l Flows<br>anagemen<br>IFR<br>. Lowflo<br>ht Lowfl<br>. Highfl<br>ly Distr | (Mill. cu<br>=<br>t Class =<br>w =<br>ow =<br>ow =<br>ibutions | 1. m or<br>54.930<br>= C<br>17.123<br>10.759<br>0.000<br>6.364<br>(Mill. | A B72E B72<br>index va<br>(31.17 %<br>(19.59 %<br>( 0.00 %<br>(11.59 %<br>Cu. m.) | lues):<br>MAR)<br>MAR)<br>MAR) | 372E     |              |
|--------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|----------|--------------|
|                                                                    |                                                                            | Type : Lo<br>ral Flows                                         |                                                                          | Madi                                                                              | fied Flow                      | TO (TED) |              |
| Month                                                              | Nacu                                                                       | ral Flows                                                      | 5                                                                        |                                                                                   |                                |          | Total Elorga |
|                                                                    | Maan                                                                       | (D)                                                            | 014                                                                      |                                                                                   |                                | -        | Total Flows  |
|                                                                    |                                                                            |                                                                |                                                                          |                                                                                   | 2                              | Maint.   |              |
| Oct                                                                |                                                                            | 0.394                                                          |                                                                          |                                                                                   |                                | 0.000    |              |
| Nov                                                                | 1.272                                                                      | 0.623                                                          | 0.490                                                                    | 0.337                                                                             | 0.000                          | 0.226    | 0.563        |
| Dec                                                                | 3.432                                                                      | 6.699                                                          | 1.952                                                                    | 0.536                                                                             | 0.000                          | 0.218    | 0.753        |
| Jan                                                                | 9.079                                                                      | 23.562                                                         | 2.595                                                                    | 1.125                                                                             | 0.000                          | 0.712    | 1.837        |
| Feb                                                                | 14.314                                                                     | 30.075                                                         | 2.101                                                                    | 1.935                                                                             | 0.000                          | 4.536    | 6.471        |
| Mar                                                                | 11.714                                                                     | 23.900                                                         | 2.040                                                                    | 1.821                                                                             | 0.000                          | 0.672    | 2.493        |
| Apr                                                                | 5.038                                                                      | 7.973                                                          | 1.583                                                                    | 1.244                                                                             | 0.000                          | 0.000    | 1.244        |
| May                                                                |                                                                            | 1.603                                                          | 0.606                                                                    | 0.830                                                                             | 0.000                          | 0.000    | 0.830        |
| -                                                                  |                                                                            | 1.119                                                          | 0.542                                                                    | 0.778                                                                             | 0.000                          | 0.000    | 0.778        |
| Jul                                                                |                                                                            | 0.807                                                          |                                                                          |                                                                                   |                                |          |              |
| Aug                                                                |                                                                            | 0.580                                                          |                                                                          |                                                                                   |                                |          |              |
| Sep                                                                | 1.169                                                                      |                                                                | 0.358                                                                    | 0.492                                                                             |                                |          |              |
| - • I-                                                             | . = • •                                                                    |                                                                |                                                                          |                                                                                   |                                |          |              |



## A.5.17 IFR16/17 IFR estimate: PES=C, REC=B

APP TABLE 27: SUMMARY OF IFR ESTIMATE FOR IFR16/17 (CLASS B).

Total Runoff : REGION I B73C Annual Flows (Mill. cu. m or index values): = 1968.007 MAR IFR Management Class = B = 425.731 (21.63 %MAR) Total IFR = 361.015 (18.34 %MAR) Maint. Lowflow = 95.014 ( 4.83 %MAR) = 64.716 ( 3.29 %MAR) Drought Lowflow Maint. Highflow Monthly Distributions (Mill. cu. m.) Distribution Type : Olifants Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows Maint. Drought Maint. CV Mean SD Maint. 18.749 5.357 26.698 7.258 Oct 64.267 78.188 1.217 Nov 188 322 191 836 1.019 1.089 19.838 Nov 188.322 191.836 1.019 8.129 34.827 8.303 Dec 239.225 208.018 0.870 31.605 6.604 38.210 42.855 10.981 48.384 12.096 Jan 355.569 357.066 1.004 6.962 49.817 Feb 383.890 475.492 1.239 32.798 81.182 45.533 11.517 33.437 8.554 Mar 283.757 326.211 1.150 6.757 52.290 Apr 154.031 132.130 0.858 2.377 35.814 May 92.431 47.008 0.509 29.463 7.767 0.000 29.463 Jun 66.123 24.198 Jul 53.591 17.095 0.366 24.365 0.000 6.480 24.365 0.319 21.963 5.893 0.000 21.963 Aug 44.999 13.819 0.307 19.820 5.625 0.000 19.820 Sep 41.801 17.267 0.413 18.144 5.184 0.000 18.144

#### APP TABLE 28: SUMMARY OF IFR ESTIMATE FOR IFR16/17 (CLASS C).

```
Total Runoff : REGION I B73C
Annual Flows (Mill. cu. m or index values):
MAR = 1968.007
IFR Management Class = C
Total IFR = 289.634 (14.72 %MAR)
Maint. Lowflow = 224.917 (11.43 %MAR)
Drought Lowflow = 95.014 ( 4.83 %MAR)
Maint. Highflow = 64.716 ( 3.29 %MAR)
```

Monthly Distributions (Mill. cu. m.) Distribution Type : Olifants

| Month | Natı    | iral Flows |         | Modi     | fied Flows | (IFR)  |        |
|-------|---------|------------|---------|----------|------------|--------|--------|
| Low   | flows   | High Fl    | ows Tot | al Flows |            |        |        |
|       | Mean    | SD         | CV      | Maint.   | Drought    | Maint. | Maint. |
| Oct   | 64.267  | 78.188     | 1.217   | 11.249   | 5.357      | 1.089  | 12.338 |
| Nov   | 188.322 | 191.836    | 1.019   | 16.070   | 7.258      | 8.129  | 24.200 |
| Dec   | 239.225 | 208.018    | 0.870   | 19.017   | 8.303      | 6.604  | 25.621 |
| Jan   | 355.569 | 357.066    | 1.004   | 34.284   | 10.981     | 6.962  | 41.246 |
| Feb   | 383.890 | 475.492    | 1.239   | 29.030   | 12.096     | 32.798 | 61.828 |
| Mar   | 283.757 | 326.211    | 1.150   | 27.320   | 11.517     | 6.757  | 34.077 |
| Apr   | 154.031 | 132.130    | 0.858   | 19.958   | 8.554      | 2.377  | 22.335 |
| May   | 92.431  | 47.008     | 0.509   | 17.677   | 7.767      | 0.000  | 17.677 |
| Jun   | 66.123  | 24.198     | 0.366   | 14.515   | 6.480      | 0.000  | 14.515 |
| Jul   | 53.591  | 17.095     | 0.319   | 13.124   | 5.892      | 0.000  | 13.124 |
| Aug   | 44.999  | 13.819     | 0.307   | 11.785   | 5.625      | 0.000  | 11.785 |
| Sep   | 41.801  | 17.267     | 0.413   | 10.886   | 5.184      | 0.000  | 10.886 |



|                 |                                               | Oct   | Nov   |      | Dec  |      | Jan  |      | Feb   |      |      | Mar  |      | Apr  | Vol<br>(10 <sup>6</sup> m <sup>3</sup> ) | % MAR  |
|-----------------|-----------------------------------------------|-------|-------|------|------|------|------|------|-------|------|------|------|------|------|------------------------------------------|--------|
| IFR1            | Discharge (m <sup>3</sup> /s)                 | 3     | 3     | 5    | 10   |      | 10   | 30   | 100   | 10   |      | 10   |      | 3    |                                          |        |
| nMAR            | Duration (days)                               | 1     | 2     | 2    | 3    |      | 3    | 3    | 4     | 3    |      | 3    |      | 1    |                                          |        |
| 148.094         | Return period (yrs)                           | 1     | 1     | 1    | 1    |      | 1    | 1    | 2     | 1    |      | 1    |      | 1    |                                          |        |
| Olifants River  | Max. depth (m)                                | 0.52  | 0.52  | 0.6  | 0.78 |      | 0.78 | 1.2  | 1.93  | 0.78 |      | 0.78 |      | 0.52 |                                          |        |
| Upper Olifants  | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 0.23  | 0.84  |      | 1.44 |      | 5.95 |      | 14.52 |      |      | 1.45 |      |      | 24.43                                    | 16.496 |
| IFR2            | Discharge (m <sup>3</sup> /s)                 | 5     | 12    | 12   | 12   | 15   | 35   | 12   | 120   | 140  | 15   | 15   |      | 5    |                                          |        |
| nMAR            | Duration (days)                               | 2     | 3     | 3    | 3    | 3    | 4    | 3    | 5     | 5    | 4    | 3    |      | 2    |                                          |        |
| 489.7           | Return period (yr)                            | 1     | 1     | 1    | 1    | 1    | 1    | 1    | 2     | 3    | 1    | 1    |      | 1    |                                          |        |
| Olifants River  | Max. depth (m)                                | 0.63  | 0.84  | 0.84 | 0.84 | 0.9  | 1.18 | 0.84 | 1.78  | 1.92 | 0.9  | 0.9  |      | 0.63 |                                          |        |
| Upper Olifants  | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 0.48  | 2.99  |      | 2.89 |      | 6.71 |      | 21.5  |      |      | 1.76 |      | 0.29 | 36.62                                    | 7.478  |
| IFR3            | Discharge (m <sup>3</sup> /s)                 | 5     | 3     | 3    | 3    | 15   | 15   |      | 50    |      |      | 6    |      | 5    |                                          |        |
| nMAR            | Duration (days)                               | 2     | 1     | 1    | 2    | 2    | 3    |      | 4     |      |      | 2    |      | 2    |                                          |        |
| 73.7            | Return period (yrs)                           | 1     | 1     | 1    | 1    | 1    | 1    |      | 3     |      |      | 1    |      | 1    |                                          |        |
| Klein-Olifants  | Max. depth (m)                                | 0.65  | 0.57  | 0.57 | 0.57 | 0.93 | 0.93 |      | 1.5   |      |      | 0.69 |      | 0.65 |                                          |        |
| Upper Olifants  | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 0.58  | 0.47  |      | 2.08 |      | 2.25 |      | 3.54  |      |      | 0.67 |      | 0.56 | 10.15                                    | 13.777 |
| IFR4            | Discharge (m <sup>3</sup> /s)                 | 6     | 5     | 10   | 14   |      | 34   |      | 45    |      |      | 34   | 14   | 5    |                                          |        |
| nMAR            | Duration (days)                               | 2     | 2     | 3    | 3    |      | 3    |      | 4     |      |      | 4    | 3    | 2    |                                          |        |
| 192.6           | Return period (yr)                            | 1     | 1     | 1    | 1    |      | 1    |      | 2     |      |      | 1    | 1    | 1    |                                          |        |
| Wilge River     | Max. depth (m)                                | 1.07  | 1.02  | 1.23 | 1.34 |      | 1.69 |      | 1.82  |      |      | 1.69 | 1.34 | 1.02 |                                          |        |
| Upper Olifants  | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 0.53  | 2.05  |      | 1.99 |      | 5.09 |      | 7.89  |      |      | 8.17 |      | 0.58 | 26.3                                     | 13.637 |
| IFR5            | Discharge (m <sup>3</sup> /s)                 | 5     | 8     |      | 25   |      | 90   |      | 180   | 90   |      | 25   |      | 9    |                                          |        |
| nMAR            | Duration (days)                               | 2     | 3     |      | 4    |      | 5    |      | 5     | 5    |      | 4    |      | 3    |                                          |        |
| 503             | Return period (yrs)                           | 1     | 1     |      | 1    |      | 1    |      | 3     | 0.66 |      | 1    |      | 1    |                                          |        |
| Olifants River  | Max. depth (m)                                | 0.84  | 0.96  |      | 1.3  |      | 1.86 |      | 2.39  | 1.86 |      | 1.3  |      | 0.99 |                                          |        |
| Middle Olifants | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 0.417 | 0.832 |      | 4.07 |      | 17.7 |      | 17.6  |      |      | 3.93 |      | 0.96 | 45.509                                   | 9.055  |
| IFR6            | Discharge (m <sup>3</sup> /s)                 | 1     | 3     |      | 12   |      | 5    | 5    | 5     | 13   | 25   | 13   |      | 3    |                                          |        |
| nMAR            | Duration (days)                               | 1     | 1     |      | 2    |      | 2    | 5    | 2     | 2    | 3    | 2    |      | 1    |                                          |        |
| 63.4            | Return period (yrs)                           | 1     | 1     |      | 1    |      | 1    | 1    | 1     | 2    | 2    | 1    |      | 1    |                                          |        |
| Elands River    | Max. depth (m)                                | 0.53  | 0.8   |      | 1.34 |      | 0.96 | 0.96 | 0.96  | 1.38 | 1.77 | 1.38 |      | 0.8  |                                          |        |
|                 | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 0.077 | 0.238 |      | 1.42 |      |      |      | 2.68  |      |      | 1.54 |      | 0.24 | 7.315                                    | 11.534 |

#### APP TABLE 29: HIGH-FLOW (FRESHETS AND FLOODS) EWRS FROM THE COMPREHENSIVE RESERVE (DWAF 2001A-C)

|                  |                                               | Oct  | Nov   |      | Dec   |      |      | Jan   |      | Feb    |      |      |     | Mar  |      | Apr   | Vol<br>(10 <sup>6</sup> m <sup>3</sup> ) | % MAR |
|------------------|-----------------------------------------------|------|-------|------|-------|------|------|-------|------|--------|------|------|-----|------|------|-------|------------------------------------------|-------|
| IFR7             | Discharge (m <sup>3</sup> /s)                 | 5    | 20    |      | 40    |      |      | 45    |      | 300    | 150  |      |     | 40   |      | 10    |                                          |       |
| nMAR             | Duration (days)                               | 2    | 3     |      | 5     |      |      | 5     |      | 6      | 6    |      |     | 5    |      | 2     |                                          |       |
| 704              | Return period (yrs)                           | 1    | 1     |      | 1     |      |      | 1     |      | 2      | 2    |      |     | 1    |      | 1     |                                          |       |
| Olifants River   | Max. depth (m)                                | 1.02 | 1.71  |      | 2.22  |      |      | 2.32  |      | 4.73   | 3.65 |      |     | 2.22 |      | 1.32  |                                          |       |
| Middle Olifants  | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 0.5  | 2.8   |      | 7.8   |      |      | 8.7   |      | 33.7   |      |      |     | 7.7  |      | 1     | 62.2                                     | 8.82  |
| IFR8             | Discharge (m <sup>3</sup> /s)                 | 10   | 20    | 10   | 35    | 10   | 10   | 50    | 10   | 10     | 10   | 350  | 150 | 35   | 10   | 10    |                                          |       |
| nMAR             | Duration (days)                               | 2    | 3     | 2    | 4     | 2    | 2    | 5     | 2    | 2      | 2    | 6    | 6   | 4    | 2    | 2     |                                          |       |
| 834.5            | Return period (yrs)                           | 1    | 1     | 1    | 1     | 1    | 1    | 1     | 1    | 1      | 1    | 2    | 2   | 1    | 1    | 1     |                                          |       |
| Olifants River   | Max. depth (m)                                | 0.98 | 1.31  | 0.98 | 1.65  | 0.98 | 0.98 | 1.91  | 0.98 | 0.98   | 0.98 | 4.26 | 3   | 1.65 | 0.98 | 0.98  |                                          |       |
| Middle Olifants  | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 1.06 | 3.94  |      | 8.67  |      |      | 21.26 |      | 48.084 |      |      |     | 7.21 |      | 0.968 | 91.192                                   | 10.92 |
| IFR9             | Discharge (m <sup>3</sup> /s)                 | 5    | 5     |      | 10    |      |      | 20    | 65   | 15     |      |      |     | 15   |      | 5     |                                          |       |
| nMAR             | Duration (days)                               | 2    | 2     |      | 3     |      |      | 5     | 5    | 3      |      |      |     | 3    |      | 2     |                                          |       |
| 171.58           | Return period (yrs)                           | 1    | 1     |      | 1     |      |      | 1.5   | 3    | 1      |      |      |     | 1    |      | 1     |                                          |       |
| Steelpoort River | Max. depth (m)                                | 0.63 | 0.63  |      | 0.81  |      |      | 1.06  | 1.75 | 0.95   |      |      |     | 0.95 |      | 0.63  |                                          |       |
| Lower Olifants   | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 0.55 | 0.5   |      | 1.41  |      |      | 5.19  |      | 2.13   |      |      |     | 2.17 |      | 0.48  | 12.43                                    | 7.24  |
| IFR10            | Discharge (m <sup>3</sup> /s)                 | 8    | 8     |      | 15    |      |      | 50    | 80   | 15     |      |      |     | 15   |      | 8     |                                          |       |
| nMAR             | Duration (days)                               | 2    | 2     |      | 3     |      |      | 6     | 6    | 3      |      |      |     | 3    |      | 2     |                                          |       |
| 406.231          | Return period (yrs)                           | 1    | 1     |      | 1     |      |      | 1.5   | 2    | 1      |      |      |     | 1    |      | 1     |                                          |       |
| Steelpoort River | Max. depth (m)                                | 0.77 | 0.77  |      | 0.98  |      |      | 1.6   | 1.96 | 0.98   |      |      |     | 0.98 |      | 0.77  |                                          |       |
| Lower Olifants   | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 0.85 | 0.75  |      | 1.94  |      |      | 10.8  |      | 1.88   |      |      |     | 1.99 |      | 0.76  | 18.97                                    | 4.67  |
| IFR11            | Discharge (m <sup>3</sup> /s)                 | 9    | 11    |      | 20    |      |      | 35    |      | 80     |      |      |     | 30   |      | 13    |                                          |       |
| nMAR             | Duration (days)                               | 2    | 3     |      | 4     |      |      | 4     |      | 6      |      |      |     | 4    |      | 3     |                                          |       |
| 1393             | Return period (yrs)                           | 1    | 1     |      | 1     |      |      | 1     |      | 1      |      |      |     | 1    |      | 1     |                                          |       |
| Olifants River   | Max. depth (m)                                | 1.01 | 1.08  |      | 1.33  |      |      | 1.63  |      | 2.18   |      |      |     | 1.54 |      | 1.15  |                                          |       |
| Lower Olifants   | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 0.91 | 1.244 |      | 3.048 |      |      | 5.59  |      | 17.2   |      |      |     | 4.74 |      | 1.56  | 34.292                                   | 2.46  |
| IFR12            | Discharge (m <sup>3</sup> /s)                 | 10   | 10    | 10   | 15    | 15   |      | 15    | 20   | 15     | 30   | 75   |     | 15   | 20   | 10    | 10                                       |       |
| nMAR             | Duration (days)                               | 3    | 3     | 3    | 3     | 3    |      | 3     | 3    | 3      | 4    | 5    |     | 3    | 3    | 3     | 3                                        |       |
| 383.7            | Return period (yrs)                           | 1    | 1     | 1    | 1     | 1    |      | 1     | 1    | 1      | 1    | 3    |     | 1    | 1    | 1     | 1                                        |       |
| Blyde River      | Max. depth (m)                                | 0.76 | 0.76  | 0.76 | 0.89  | 0.89 |      | 0.89  | 1    | 0.89   | 1.16 | 1.68 |     | 0.89 | 1    | 0.76  | 0.76                                     |       |
| Lower Olifants   | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 1.23 | 2.39  |      | 3.83  |      |      | 4.26  |      | 7.9    |      |      |     | 3.76 |      | 1.68  | 25.05                                    | 6.52  |





|                |                                               | Oct  | Nov   | Dec   |      | Jan  | Feb  |      | Mar  | Apr  | Vol<br>(10⁰m³) | % MAR  |
|----------------|-----------------------------------------------|------|-------|-------|------|------|------|------|------|------|----------------|--------|
| IFR13          | Discharge (m <sup>3</sup> /s)                 | 15   | 50    | 30    | 30   | 60   | 180  | 250  | 60   | 20   |                |        |
| nMAR           | Duration (days)                               | 3    | 5     | 4     | 4    | 5    | 7    | 7    | 5    | 4    |                |        |
| 1845           | Return period (yrs)                           | 1    | 1     | 1     | 1    | 1    | 1    | 3    | 1    | 1    |                |        |
| Olifants River | Max. depth (m)                                | 0.92 | 1.56  | 1.25  | 1.25 | 1.69 | 2.75 | 3.44 | 1.69 | 1.04 |                |        |
| Lower Olifants | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 1.09 | 8.07  | 6.64  |      | 9.23 | 40.9 |      | 9.13 | 1.36 | 76.42          | 4.142  |
| IFR14a         | Discharge (m <sup>3</sup> /s)                 |      | 2     | 2     |      | 5    | 40   | 80   | 5    |      |                |        |
| nMAR           | Duration (days)                               |      | 2     | 2     |      | 3    | 4    |      | 2    |      |                |        |
| 54.9           | Return period (yrs)                           |      | 1     | 1     |      | 1    | 1    | 3    | 1    |      |                |        |
| Selati River   | Max. depth (m)                                |      | 0.64  | 0.64  |      | 0.78 | 1.5  | 1.97 | 0.78 |      |                |        |
| Lower Olifants | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) |      | 0.226 | 0.218 |      | 0.72 | 4.54 |      | 0.67 |      | 6.374          | 11.610 |
| IFR14b         | Discharge (m <sup>3</sup> /s)                 |      | 3     | 3     |      | 7    | 60   | 100  | 7    |      |                |        |
| nMAR           | Duration (days)                               |      | 2     | 1     |      | 3    | 4    | 4    | 2    |      |                |        |
| 64.9           | Return period (yrs)                           |      | 1     | 1     |      | 1    | 1    | 3    | 1    |      |                |        |
| Selati River   | Max. depth (m)                                |      | 0.76  | 0.76  |      | 0.99 | 2.03 | 2.42 | 0.99 |      |                |        |
| Lower Olifants | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) |      | 0.351 | 0.342 |      | 1.03 | 5.81 |      | 0.79 |      | 8.323          | 12.811 |
| IFR16/17       | Discharge (m <sup>3</sup> /s)                 | 14   | 50    | 30    | 30   | 50   | 150  | 250  | 50   | 26   |                |        |
| nMAR           | Duration (days)                               | 3    | 5     | 4     | 4    | 5    | 7    | 7    | 5    | 4    |                |        |
| 1968           | Return period (yrs)                           | 1    | 1     | 1     | 1    | 1    | 1    | 3    | 1    | 1    |                |        |
| Olifants       | Max. depth (m)                                | 0.6  | 1     | 0.81  | 0.81 | 1    | 1.55 | 2.05 | 1    | 0.77 |                |        |
| Lower Olifants | Monthly vol (10 <sup>6</sup> m <sup>3</sup> ) | 1.09 | 8.13  | 6.6   |      | 6.96 | 32.8 |      | 6.76 | 2.38 | 64.72          | 3.289  |



# A.6 Dwars

```
APP TABLE 30: CATEGORY B/C (THE REC) EWRS FOR DWA-EWR1 (STASSEN 2008B).
    Please note different units for summary statistics (MCM) and monthly distribution (mill m<sup>3</sup>/s)
Desktop Version 2, Printed on 2008/04/21
Summary of EWR estimate for: Dwars_EWR1
Total runoff, cumulative at EWR site 1 (S24°50'38.1"; E30°05'30.8") in quaternary catchment B41H
        Annual Flows (Mill. cu. m or index values):
                              31.429*
        MAR
        S.Dev.
                              22.106
                          _
                               0.703
        CV
       Q75
                          =
                               0.660
        Q75/MMF
                          =
                               0.252
        BFI Index
                          =
                               0.431
        CV(JJA+JFM) Index =
                               1.747
        ERC = B/C**
        Total IFR
                          =
                               8.142 (25.91 %MAR)
        Maint. Lowflow
                          =
                               6.099 (19.41 %MAR)
       Drought Lowflow
                               2.289 ( 7.28 %MAR)
                         =
        Maint. Highflow
                         =
                               2.042 ( 6.50 %MAR)
       Monthly Distributions (<u>cu.m./s</u>)
        Distribution Type : Olifants
       Month
                Natural Flows
                                         Modified Flows (IFR)
                                         Low flows High Flows Total Flows
               Mean
                       SD
                              CV
                                      Maint. Drought
                                                        Maint.
                                                                    Maint.
         Oct
               0.337
                       0.418
                               0.463
                                        0.107
                                                0.043
                                                          0.060
                                                                     0.167
         Nov
               1.149
                      1.464
                               0.492
                                        0.160
                                               0.061
                                                          0.060
                                                                    0.220
                       1.754
                               0.356
         Dec
                                        0.215
                                                0.080
                                                          0.144
               1.841
                                                                     0.359
         Jan
               1.977
                       2.007
                               0.379
                                        0.251
                                                0.092
                                                          0.141
                                                                     0.392
         Feb
               2.230
                       2.964
                               0.550
                                        0.310
                                                0.113
                                                          0.293
                                                                     0.603
                       2.140
         Mar
               1.576
                               0.507
                                        0.280
                                                0.102
                                                          0.094
                                                                     0.374
               1.049
                       0.902
                               0.332
                                       0.264
                                                0.097
                                                          0.000
                                                                     0.264
         Apr
                               0.300
                                                0.080
                                                          0.000
               0.659
                       0.530
                                        0.215
         Mav
                                                                     0.215
         Jun
               0.420
                       0.244
                               0.224
                                        0.173
                                                0.066
                                                          0.000
                                                                     0.173
         Jul
               0.305
                       0.137
                               0.168
                                        0.134
                                                0.052
                                                           0.000
                                                                     0.134
                       0.131
         Aug
               0.257
                               0.190
                                        0.114
                                                0.045
                                                           0.000
                                                                     0.114
               0.242
                       0.122
                               0.195
                                        0.107
                                                0.043
                                                           0.000
                                                                     0.107
         Sep
```

\* Virgin mean annual runoff (VMAR) based on the total flow from quaternary catchment B41G and 18% of B41H. Flow record scaled from the Steelpoort River flow record as determined during the high confidence Reserve determination study for the Olifants River.

\*\* Recommended Ecological category determined during the intermediate III Reserve determination study on the Dwars River at EWR site (S24° 50' 38.1"; E30° 05' 30.8") in quaternary catchment B41H.

The flood requirements are provided in App Table .

| Floods  | Flood size (range)                 | Integrated requirement          | Spatsim output                                      |
|---------|------------------------------------|---------------------------------|-----------------------------------------------------|
| Class 1 | 1-2 daily average                  | Oct, Nov, Dec, Jan, Feb         | Oct, Nov, Dec, Jan, Feb                             |
|         |                                    | 5 total                         | 1 m <sup>3</sup> /s, 1day duration                  |
| Class 2 | 2 - 4 daily average                | 2 in either Nov/Dec/Jan<br>/Feb | December, January                                   |
|         |                                    | 2 total                         | 1 $m^3/s$ (Dec) and 3 $m^3/s$ (Jan), 1 day duration |
| Class 3 | 10 m <sup>3</sup> /s daily average | 1:2 (summer)                    | January                                             |
|         |                                    |                                 | 10 m <sup>3</sup> /s (1:2 years)                    |
| Class 4 | 16 m <sup>3</sup> /s               | 1: 4 (summer)                   | March                                               |
|         |                                    |                                 | 12 m <sup>3</sup> /s (1:4 years), 1 day duration    |
| Class 5 | 40 m <sup>3</sup> /s               | 1: 10 (summer)                  | February                                            |
|         |                                    |                                 | 18 m <sup>3</sup> /s (1:10 years), 1 day duration   |

| APP TABLE 31. | CATEGORY B/C | (THE REC) FL | DWA-FWR1 | (STASSEN 2008A)  |
|---------------|--------------|--------------|----------|------------------|
| ALL TADLE JI. | CALCOULT D/C |              |          | (JIAJJLIN ZUUUA) |



# A.7 Elefantes

| ERC = C      |           |            |       | EWR Flows ( | m³/s)   |            |             |
|--------------|-----------|------------|-------|-------------|---------|------------|-------------|
|              | Natural F | low Statis | tics  | Low Flows   |         | High Flows | Total Flows |
| Month        | Mean      | SD         | CV    | Maint.      | Drought | Maint.     | Maint.      |
| Oct          | 28.637    | 21.711     | 0.283 | 7.500       | 3.000   | 0.000      | 7.500       |
| Nov          | 85.191    | 79.304     | 0.359 | 9.000       | 3.700   | 0.000      | 9.000       |
| Dec          | 127.198   | 5.829      | 0.311 | 10.300      | 4.300   | 4.974      | 15.274      |
| Jan          | 196.434   | 96.176     | 0.373 | 12.300      | 5.200   | 0.516      | 12.816      |
| Feb          | 251.423   | 87.397     | 0.473 | 14.000      | 6.000   | 36.814     | 50.814      |
| Mar          | 151.322   | 51.147     | 0.373 | 11.000      | 4.600   | 4.974      | 15.974      |
| Apr          | 79.877    | 52.133     | 0.252 | 8.900       | 3.600   | 2.220      | 11.120      |
| Мау          | 48.468    | 24.860     | 0.191 | 8.100       | 3.300   | 0.000      | 8.100       |
| Jun          | 35.359    | 12.767     | 0.139 | 7.700       | 3.100   | 0.000      | 7.700       |
| Jul          | 27.868    | 8.328      | 0.112 | 7.500       | 3.000   | 0.000      | 7.500       |
| Aug          | 23.369    | 6.695      | 0.107 | 7.400       | 2.900   | 0.000      | 7.400       |
| Sep          | 21.891    | 7.909      | 0.139 | 7.300       | 2.900   | 0.000      | 7.300       |
| Total (calc) | 1077.04   | 454.256    | 3.112 | 111.000     | 45.600  | 49.498     | 160.498     |
| % of MAR     |           |            |       |             |         |            |             |
| (MAR=1077.04 |           |            |       | 10.306      | 4.234   | 4.596      | 14.902      |
| m³/s)        |           |            |       |             |         |            |             |
| 2819.020 MCM |           |            |       |             |         |            |             |
| (calc)       |           |            |       |             |         |            |             |

#### APP TABLE 32: CATEGORY C (REC) EWRS FOR M-EWR1 (SALOMAN, 2007A)

APP TABLE 33: CATEGORY C (REC) EWRS FOR M-EWR2 (SALOMAN, 2007A)

| ERC = C            |           |              |       | EWR Flows | (m3/s)  |            |             |
|--------------------|-----------|--------------|-------|-----------|---------|------------|-------------|
|                    | Natural H | Flow Statist | ics   | Low Flows |         | High Flows | Total Flows |
| Month              | Mean      | SD           | CV    | Maint.    | Drought | Maint.     | Maint.      |
| Oct                | 44.40     | 33.04        | 0.28  | 8.50      | 3.50    | 0.00       | 8.50        |
| Nov                | 129.94    | 127.53       | 0.38  | 10.20     | 4.10    | 0.00       | 10.20       |
| Dec                | 238.57    | 165.09       | 0.26  | 12.70     | 4.90    | 18.27      | 30.97       |
| Jan                | 546.49    | 635.42       | 0.43  | 19.30     | 7.10    | 54.85      | 74.15       |
| Feb                | 847.88    | 892.53       | 0.44  | 25.00     | 9.00    | 139.48     | 164.48      |
| Mar                | 487.01    | 469.09       | 0.36  | 18.00     | 6.70    | 39.37      | 57.37       |
| Apr                | 250.86    | 242.55       | 0.37  | 12.80     | 4.90    | 8.70       | 21.50       |
| Мау                | 134.17    | 140.63       | 0.39  | 10.40     | 4.10    | 0.00       | 10.40       |
| Jun                | 93.07     | 171.42       | 0.71  | 9.50      | 3.80    | 0.00       | 9.50        |
| Jul                | 62.33     | 88.82        | 0.53  | 8.90      | 3.60    | 0.00       | 8.90        |
| Aug                | 40.22     | 23.83        | 0.22  | 8.40      | 3.50    | 0.00       | 8.40        |
| Sep                | 35.74     | 17.14        | 0.19  | 8.30      | 3.40    | 0.00       | 8.30        |
| Total (cals)       | 2910.67   | 3007.095     | 4.557 | 152.000   | 58.600  | 260.671    | 412.671     |
| % of MAR           |           |              |       |           |         |            |             |
| (MAR=2910.67       |           |              |       | 5.222     | 2.013   | 8.956      | 14.178      |
| m <sup>3</sup> /s) |           |              |       |           |         |            |             |
| 7618.345 MCM       |           |              |       |           |         |            |             |
| (calc)             |           |              |       |           |         |            |             |

#### APP TABLE 34: CATEGORY C (REC) FLOOD REQUIREMENT EWRS FOR M-EWR1 AND 2 (SALOMAN, 2007A)

|                     |                       | Class I |   |     |     | Clas | s II |     | Class III |     |     | Class IV |     |     | Class V |
|---------------------|-----------------------|---------|---|-----|-----|------|------|-----|-----------|-----|-----|----------|-----|-----|---------|
| EWR1                |                       |         |   |     |     |      |      |     |           |     |     |          |     |     |         |
| Peak flow<br>(m³/s) | 16<br>Jan Feb Mar Dec |         |   |     | 75  |      |      | 150 |           |     | 300 |          |     |     |         |
| Month               | Jan Feb Mar Dec       |         |   | Dec | Feb | Ap   | or   | Dec | Feb       |     |     | Feb      |     |     |         |
| Duration (days)     | 1                     | 1       | 1 | 1   | 3   | )    |      | 3   |           | 3   |     |          | 1   |     |         |
| # of Events         | 1                     | 1       | 1 | 1   | 1   | 1    |      | 1   |           | 1   |     |          | 1   |     |         |
| EWR2                |                       |         |   |     |     |      |      |     |           |     |     |          |     |     |         |
| Peak flow<br>(m³/s) |                       | 6       | 7 |     |     | 14   | 15   |     |           | 270 |     |          | 540 |     | 1080    |
| Month               | Jan Feb Mar Dec       |         |   | Dec | Feb |      |      | Apr | Jan       | Feb | Mar | Jan      | Feb | Mar | Feb     |
| Duration (days)     | 1                     | 1       | 1 | 1   | 3   |      |      | 3   | 3         | 3   | 3   | 4        | 4   | 4   | 3       |
| #of Events          | 1 1 1 1               |         |   | 1 1 |     |      | 1    | 1   | 1         | 1   | 1   | 1        | 1   |     |         |



# Appendix C: EWR results at nodes (Classification study)

- \* MAR: Mean Annual Run-off
- <sup>1</sup> Based on the argument that the higher the EI-ES, the closer to the reference the REC should be. Default REC: Very high = A; High = B; Moderate = C and Low to Very Low = D. This does not consider attainability. DWA 2010 PES update (DWA, 2010).
- <sup>2</sup> Based on EWR for maintenance and drought flows only

EWR sites are shaded. This excludes Nou-EWR1 and Tre-EWR1 for which we have no additional information.

**PLEASE NOTE:** The EWRs are for the PES, not the REC.

| Node | Quat          | Nodes                                                   | EI       | ES       | PES   | REC /<br>Default<br>REC <sup>1</sup> | Natural<br>MAR*<br>(mcm/ a) | EWR (PES)<br>as % of<br>natural<br>MAR <sup>2</sup> |
|------|---------------|---------------------------------------------------------|----------|----------|-------|--------------------------------------|-----------------------------|-----------------------------------------------------|
|      |               | Recommended Class III                                   |          |          |       |                                      |                             |                                                     |
| HN1  | B11A,<br>B11B | Olifants (confluence with<br>Steenkoolspruit)           | High     | High     | С     | В                                    | 61.3                        | 10.25                                               |
| HN2  | B11C          | Piekespruit (confluence with<br>Steenkoolspruit)        | High     | High     | В     | В                                    | -                           | -                                                   |
| HN3  | B11D          | Dwars-indieWegspruit ( confluence with Trichardtspruit) | Moderate | High     | С     | В                                    | -                           | -                                                   |
| HN4  | B11D          | Steenkoolspruit (outlet of quaternary)                  | Moderate | High     | D     | В                                    | 44.6                        | 4.7                                                 |
| HN5  | B11E          | Blesbokspruit (confluence with Rietspruit)              | High     | High     | В     | В                                    | -                           | -                                                   |
| HN6  | B11E          | Steenkoolspruit (confluence with Olifants)              | Moderate | High     | D     | В                                    | 65.4                        | 4.7                                                 |
| HN7  | B11F          | Olifants ( outlet of quaternary)                        | Moderate | High     | D     | В                                    | 147.9                       | 4.7                                                 |
| HN8  | B11G          | Noupoortspruit (EWR site - NOU-<br>EWR1) (existing)     | Moderate | Moderate | C/D   | C/D                                  | 4.28                        | 13.9                                                |
| HN9  | B11G          | Olifants (releases from Witbank<br>Dam)                 | Moderate | High     | D     | В                                    | 164                         | 4.7                                                 |
| HN10 | B11H          | Spookspruit (confluence with Olifants)                  | High     | High     | С     | В                                    | 11.4                        | 10.25                                               |
| HN11 | B11J          | Olifants (EWR site 1 - EWR1)<br>(existing)              | Moderate | Moderate | (E) D | D                                    | 184.5                       | 4.7                                                 |
| HN12 | B11K,<br>B11L | Klipspruit (confluence with Olifants)                   | High     | Moderate | (E) D | В                                    | 45.7                        | 4.67                                                |
| HN14 | B12A          | Boschmansfontein (confluence with Klein Olifants)       | Moderate | High     | С     | В                                    | -                           | -                                                   |
| HN15 | B12A          | Klein Olifants (outlet of quaternary)                   | High     | High     | С     | В                                    | 12.7                        | 18.85                                               |
| HN16 | B12B          | Klein Olifants (outlet of quaternary)                   | Moderate | High     | D     | В                                    | 16.9                        | 8.11                                                |
| HN17 | B12C          | Klein Olifants (EWR site - OLI-EWR1)<br>(Rapid site)    | Low      | Low      | С     | С                                    | 44.5                        | 18.85                                               |
| HN18 | B12C          | Klein Olifants (releases from<br>Middelburg Dam)        | Moderate | High     | D     | В                                    | 53.5                        | 5.52                                                |
| HN19 | B12D          | Vaalbankspruit (confluence with<br>Klein Olifants)      | Moderate | High     | D     | В                                    | -                           | -                                                   |
| HN20 | B12D          | Klein Olifants (outlet of quaternary)                   | Moderate | High     | D     | В                                    | 67.3                        | 5.52                                                |

#### APP TABLE 35: IUA1 UPPER OLIFANTS: SUMMARY OF ECO-CLASSIFICATION AND EWR



#### APP TABLE 36: UA 2 WILGE RIVER CATCHMENT: SUMMARY OF ECO-CLASSIFICATION AND EWR

| Node | Quat          | Nodes                                                 | EI       | ES        | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural<br>*MAR<br>(mcm/ a) | EWR (PES)<br>as % of<br>natural<br>MAR <sup>2</sup> |
|------|---------------|-------------------------------------------------------|----------|-----------|-----|--------------------------------------|-----------------------------|-----------------------------------------------------|
|      |               | Recommended Class II                                  |          |           |     |                                      |                             |                                                     |
| HN21 | B20A          | Bronkhorstpruit (outlet of quaternary)                | Moderate | High      | С   | В                                    | 27.7                        | 13.38                                               |
| HN22 | B20B          | Koffiespruit (confluence with<br>Bronkhorstspruit)    | Moderate | High      | С   | В                                    | 15.5                        | 13.38                                               |
| HN23 | B20C          | Osspruit (inflow to Bronkhorstspruit Dam)             | Moderate | High      | D   | В                                    | -                           | -                                                   |
| HN24 | B20C          | Bronkhorstpruit (outlet from<br>Bronkhorstspruit Dam) | High     | High      | С   | В                                    | 56.4                        | 13.44                                               |
| HN25 | B20D          | Hondespruit (confluence with<br>Bronkhorstspruit)     | High     | High      | С   | В                                    | 11.9                        | 13.39                                               |
| HN26 | B20D          | Bronkhorstpruit (confluence with Wilge)               | High     | Very high | С   | Α                                    | 79.9                        | 13.45                                               |
| HN27 | B20E,<br>B20F | Wilge (confluence with Bronkhorstspruit               | High     | Very high | С   | А                                    | 45.8                        | 13.42                                               |
| HN28 | B20G          | Saalboomspruit (confluence with Wilge)                | Moderate | High      | С   | В                                    | 22.1                        | 13.4                                                |
| HN29 | B20H          | Grootspruit (confluence with Wilge)                   | High     | Very high | С   | Α                                    | 12.8                        | 13.4                                                |
| HN30 | B20H          | Wilge (outlet of quaternary)                          | High     | Very high | В   | Α                                    | 158.2                       | 17.92                                               |
| HN31 | B20J          | Wilge (EWR site - EWR4, outlet of IUA2) (existing)    | High     | High      | С   | В                                    | 175.5                       | 12.16                                               |

#### APP TABLE 37: IUA 3 SELONS RIVER CATCHMENT: SUMMARY OF ECO-CLASSIFICATION AND EWR

| Node | Quat          | Nodes                                                                                                                                                                              | EI        | ES        | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural<br>*MAR<br>(mcm/ a) | EWR (PES)<br>as % of<br>natural<br>MAR <sup>2</sup> |
|------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----|--------------------------------------|-----------------------------|-----------------------------------------------------|
|      |               | Recommended Class II                                                                                                                                                               |           |           |     |                                      |                             |                                                     |
| HN32 | B12E          | Doringboomspruit (confluence with Klein Olifants)                                                                                                                                  | High      | High      | В   | В                                    | -                           | -                                                   |
| HN33 | B12E          | Keeromspruit (confluence with Klein<br>Olifants)                                                                                                                                   | High      | Very High | С   | А                                    | -                           | -                                                   |
| HN34 | B12E          | Klein Olifants (EWR site - EWR3) (existing)                                                                                                                                        | Moderate  | Moderate  | С   | С                                    | 81.5                        | 12.72                                               |
| HN35 | B32A          | Kranspoortspruit (EWR site - OLI-EWR3)<br>(Rapid site)                                                                                                                             | Very high | Very high | В   | A/B                                  | 4.7                         | 24.42                                               |
| HN36 | B32A          | Boekenhoutloop (inflow to Loskop Dam)                                                                                                                                              | High      | High      | В   | В                                    | -                           | -                                                   |
| HN37 | B32A          | Olifants (EWR site - EWR2) (existing)                                                                                                                                              | High      | High      | С   | В                                    | 500.6                       | 12.53                                               |
| HN38 | B32B,<br>B32C | One node at confluence of Selons with<br>Olifants in B32C. Included: Klipspruit<br>(confluence with Selons) Kruis (confluence<br>with Selons) Selons (confluence with<br>Olifants) | High      | High      | В   | В                                    | -                           | -                                                   |
| HN39 | B32C          | Olifants (releases from Loskop Dam)                                                                                                                                                | High      | High      | D   | В                                    | 568.6                       | 7.22                                                |
| HN40 | B32C          | Olifants (outlet of quaternary - outlet of IUA3)                                                                                                                                   | High      | High      | D   | В                                    | 576.8                       | 7.22                                                |

#### APP TABLE 38: IUA 4 ELANDS RIVER CATCHMENT: SUMMARY OF ECO-CLASSIFICATION AND EWR

| Node | Quat          | Nodes                                                                                                                             | EI       | ES        | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural<br>*MAR<br>(mcm/ a) | EWR<br>(PES) as<br>% of<br>natural<br>MAR <sup>2</sup> |
|------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----|--------------------------------------|-----------------------------|--------------------------------------------------------|
|      |               | Recommended Class III                                                                                                             |          |           |     |                                      |                             |                                                        |
| HN41 | B31A,<br>B, C | One node at outlet of B31C, releases from<br>Rust de Winter Dam. Included:B31A<br>(Elands) B31B (Hartbeesspruit) B31C<br>(Elands) | High     | Very High | С   | A                                    | 33.5                        | 12.34                                                  |
| HN42 | B31D          | Enkeldoringspruit (confluence with Elands)                                                                                        | High     | High      | С   | В                                    | -                           | -                                                      |
| HN43 | B31F          | Elands (releases from Mkumbe Dam)                                                                                                 | High     | High      | С   | В                                    | 59.8                        | 12.34                                                  |
| HN44 | B31G          | Kameel (upper part only                                                                                                           | Moderate | High      | D   | В                                    | -                           | -                                                      |
| HN45 | B31G          | Elands (EWR site - EWR6) (existing)                                                                                               | Moderate | Moderate  | D   | D                                    | 60.3                        | 6.32                                                   |
| HN46 | B31G          | Elands (outlet of quaternary - outlet of IUA4)                                                                                    | Low      | Moderate  | Е   | D                                    | 69.6                        | 6.32 (D)                                               |



#### APP TABLE 39: IUA 5 MIDDLE OLIFANTS UP TO FLAG BOSHIELO DAM: SUMMARY OF ECO-CLASSIFICATION AND EWR

| Node | Quat          | Nodes                                                                                                                  | EI       | ES       | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural<br>*MAR<br>(mcm/ a) | EWR<br>(PES) as<br>% of<br>natural<br>MAR <sup>2</sup> |
|------|---------------|------------------------------------------------------------------------------------------------------------------------|----------|----------|-----|--------------------------------------|-----------------------------|--------------------------------------------------------|
|      |               | Recommended Class III                                                                                                  |          |          |     |                                      |                             |                                                        |
| HN47 | B31H,<br>B31J | Elands (outlet of quaternary, confluence with Olifants)                                                                | Low      | Moderate | E   | D                                    | 84.1                        | 6.32 (D)                                               |
| HN48 | B32E,<br>B32F | One node at confluence with Olifants<br>in B32F Included: B32E (Bloed), B32F<br>(Doringpoortloop, Diepkloof and Bloed) | Moderate | High     | В   | В                                    | 17.2                        | 13.9                                                   |
| HN49 | B32G, H       | One node at outlet of B32H,<br>confluence with Olifants Included:<br>B32G (Moses) B32H (Mametse and<br>Moses)          | High     | High     | С   | В                                    | 35.4                        | 9.93                                                   |
| HN50 | B32D          | Olifants (EWR site - EWR5) (existing)                                                                                  | Moderate | Moderate | С   | С                                    | 570.9                       | 9.96                                                   |
| HN51 | B51B          | Puleng (upper part only)                                                                                               | High     | High     | В   | В                                    | -                           | -                                                      |
| HN52 | B51B          | Olifants (releases from Flag Boshielo<br>Dam)                                                                          | Moderate | High     | D   | В                                    | 723.4                       | 3.91                                                   |
| HN53 | B51D,<br>B51E | Olifants (outlet of quaternary- outlet of IUA5)                                                                        | Moderate | High     | D   | В                                    | 726.6                       | 3.81                                                   |

#### APP TABLE 40: IUA 6 STEELPOORT RIVER CATCHMENT: SUMMARY OF ECO-CLASSIFICATION AND EWR

| Node | Quat          | Nodes                                                                                                                                   | EI       | ES        | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural<br>*MAR<br>(mcm/ a) | EWR<br>(PES) as<br>% of<br>natural<br>MAR <sup>2</sup> |
|------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----|--------------------------------------|-----------------------------|--------------------------------------------------------|
|      |               | Recommended Class III                                                                                                                   |          |           |     |                                      |                             |                                                        |
| HN54 | B41A          | One node at outlet of B41A. Included:<br>Grootspruit (outlet of quaternary)<br>Langspruit, including Lakenvleispruit and<br>Kleinspruit | High     | High      | С   | В                                    | 41.9                        | 20.78                                                  |
| HN55 | B41B          | Steelpoort (EWR site - OLI-EWR2) (Rapid site)                                                                                           | Moderate | Moderate  | С   | С                                    | 63.5                        | 20.78                                                  |
| HN56 | B41C          | Masala (confluence with Steelpoort),<br>including Tonteldoos and Vlugkraal)                                                             | High     | High      | С   | В                                    | -                           | -                                                      |
| HN57 | B41D,<br>B41E | Steelpoort (inflow to De Hoop Dam)                                                                                                      | High     | Very high | С   | А                                    | 117                         | 20.78                                                  |
| HN58 | B41F          | Draaikraalspruit (confluence with Klip)                                                                                                 | High     | Very high | В   | Α                                    | -                           | -                                                      |
| HN59 | B41F          | Klip (EWR site - OLI-EWR4) (Rapid site)                                                                                                 | Moderate | Moderate  | С   | B/C                                  | 5.2                         | 12.44                                                  |
| HN60 | B41G          | Kraalspruit (confluence with Groot<br>Dwars)                                                                                            | High     | Very high | В   | А                                    | -                           | -                                                      |
| HN61 | B41G          | Klein Dwars (Confluence with Groot<br>Dwars)                                                                                            | High     | High      | D   | В                                    | -                           | -                                                      |
| HN62 | B41G          | Upper reaches of Dwars (before mining impacts)                                                                                          | High     | Very high | С   | А                                    | 24.5                        | 13.33                                                  |
| HN63 | B41H          | Dwars (EWR site - DWA-EWR1) (existing)                                                                                                  | High     | High      | B/C | B/C                                  | 31.4                        | 19.41                                                  |
| HN64 | B41H          | Steelpoort                                                                                                                              | Moderate | Moderate  | D   | С                                    | -                           | -                                                      |
| HN65 | B41J          | Steelpoort (EWR site - EWR9) (existing)                                                                                                 | High     | High      | D   | D                                    | 120.2                       | 7.97                                                   |
| HN66 | B41J,<br>B41K | Steelpoort (EWR site - EWR10) (existing)<br>(confluence with Olifants - outlet of<br>IUA6)                                              | Moderate | High      | D   | D                                    | 336.6                       | 7.43                                                   |



#### APP TABLE 41: IUA 7 MIDDLE OLIFANTS BELOW FLAG BOSHIELO DAM: SUMMARY OF ECO-CLASSIFICATION AND EWR

| Node | Quat             | Nodes                                            | EI               | ES       | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural | EWR (PES)<br>as % of<br>natural<br>MAR <sup>2</sup> |
|------|------------------|--------------------------------------------------|------------------|----------|-----|--------------------------------------|---------|-----------------------------------------------------|
|      |                  | Recommended Class III                            |                  |          |     |                                      |         |                                                     |
| HN67 | B51F             | Upper Nkumpi (outlet of quaternary)              | High             | Moderate | С   | В                                    | 3.8     | 10.73                                               |
| HN68 | B51G             | Olifants (EWR site - EWR7) (existing)            | EIS=<br>Moderate |          | Е   | D                                    | 726.5   | 3.84 (D)                                            |
| HN69 | B52E             | Palangwe (confluence with Olifants)              | High             | High     | С   | В                                    | -       | -                                                   |
| HN70 | B52F             | Hlakaro (outlet)                                 | High             | High     | С   | В                                    | -       | -                                                   |
| HN71 | B52J             | Mphogodima (confluence with Olifants)            | High             | High     | С   | В                                    | -       | -                                                   |
| HN72 | B52A, E,<br>G, J | Olifants (outlet of quaternary - outlet of IUA7) | Moderate         | High     | D   | D                                    | 799.7   | 3.88                                                |

#### APP TABLE 42: IUA 8 SPEKBOOM CATCHMENT: SUMMARY OF ECO-CLASSIFICATION AND EWR

| Node | Quat          | Nodes                                                                                                                    | EI               | ES           | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural<br>*MAR<br>(mcm/ a) | EWR (PES)<br>as % of<br>natural<br>MAR <sup>2</sup> |
|------|---------------|--------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-----|--------------------------------------|-----------------------------|-----------------------------------------------------|
|      |               | Recommended Class II                                                                                                     |                  |              |     |                                      |                             |                                                     |
| HN73 | B42A,<br>B42B | One node for Dorpspruit at outlet of<br>B42B. Included:<br>Hoppe se Spruit (confluence)<br>Doringbergspruit (confluence) | Moderate<br>High | High<br>High | cc  | BB                                   | -                           | -                                                   |
| HN74 | B42B          | Dorpspruit (EWR site - OLI-EWR9)<br>(Rapid site)                                                                         | EIS=Low          |              | C/D | C/D                                  | 63.2                        | 11.99                                               |
| HN75 | B42C          | Potloodspruit (confluence with Dorps)                                                                                    | High             | High         | С   | В                                    | -                           | -                                                   |
| HN76 | B42D,<br>B42E | Dorps (confluence with Spekboom)                                                                                         | High             | High         | С   | В                                    | 69.7                        | 14.95                                               |
| HN77 | B42D          | Spekboom (EWR site - OLI-EWR6)<br>(Rapid site)                                                                           | EIS=High         |              | С   | B/C                                  | 28                          | 17.15                                               |
| HN78 | B42F          | Potspruit (confluence with Watervals)                                                                                    | High             | High         | С   | В                                    | -                           | -                                                   |
| HN79 | B42F          | Watervals (releases from Buffelskloof<br>Dam)                                                                            | High             | Very high    | С   | А                                    | 28.6                        | 17.36                                               |
| HN80 | B42G          | Rooiwalhoek-se-Loop (confluence with Watervals)                                                                          | High             | Very high    | В   | А                                    | -                           | -                                                   |
| HN81 | B42G          | Watervals (EWR site - OLI-EWR5)<br>(Rapid site)                                                                          | EIS=<br>Moderate |              | С   | С                                    | 36.4                        | 15.47                                               |
| HN82 | B42H          | Spekboom (outlet of quaternary -<br>outlet of IUA 8)                                                                     | High             | Moderate     | В   | В                                    | 149                         | 24.84                                               |

#### APP TABLE 43: IUA 9 OHRIGSTAD CATCHMENT: SUMMARY OF ECO-CLASSIFICATION AND EWR

| Node | Quat          | Nodes                                                                                                     | EI                | ES        | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural | EWR (PES)<br>as % of<br>natural<br>MAR <sup>2</sup> |
|------|---------------|-----------------------------------------------------------------------------------------------------------|-------------------|-----------|-----|--------------------------------------|---------|-----------------------------------------------------|
|      |               | Recommended Class III                                                                                     |                   |           |     |                                      |         |                                                     |
| HN83 | B60E,<br>B60F | One node at outlet of B60F. Included:<br>Kranskloofspruit, Mantshibi, Ohrigstad<br>(outlet of quaternary) | Moderate          | Very high | D   | А                                    | 35.6    | 6.31                                                |
| HN84 | B60G          | Vyehoek (confluence with Ohrigstad)                                                                       | High              | Very high | С   | Α                                    | -       | -                                                   |
| HN85 | B60H          | Ohrigstad (EWR site - OLI-EWR8)<br>(Rapid site)                                                           | EIS =<br>Moderate |           | С   | С                                    | 65.5    | 16.59                                               |
| HN86 | B60H          | Ohrigstad (outlet of quaternary -<br>outlet of IUA9)                                                      | High              | Very high | D   | D                                    | 69.7    | 8.05                                                |



| Node | Quat          | Nodes                                                 | EI                | ES        | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural<br>*MAR<br>(mcm/ a) | EWR (PES)<br>as % of<br>natural<br>MAR <sup>2</sup> |
|------|---------------|-------------------------------------------------------|-------------------|-----------|-----|--------------------------------------|-----------------------------|-----------------------------------------------------|
|      |               | Recommended Class II                                  |                   |           |     |                                      |                             |                                                     |
| HN87 | B60J          | Sandspruit, including Rietspruit &<br>Qunduhlu        | High              | Moderate  | В   | В                                    | -                           | -                                                   |
| HN88 | B60J          | Blyde (EWR site - EWR12) (existing)                   | EIS = High        |           | В   | В                                    | 383.7                       | 27.9                                                |
| HN89 | B60J          | Blyde (confluence with Olifants)                      | Very high         | Very high | С   | Α                                    | 385.7                       | 16.13                                               |
| HN90 | B71A          | Paardevlei (confluence with<br>Tongwane)              | High              | Very high | В   | Α                                    | -                           | -                                                   |
| HN91 | B71A          | Tongwane (confluence with Olifants)                   | High              | High      | В   | В                                    | -                           | -                                                   |
| HN92 | B71B          | Olifants (EWR site - EWR8) (existing)                 | EIS =<br>Moderate | D         | D   | С                                    | 813                         | 4.3                                                 |
| HN93 | B71C          | Mohlapitse (upper reaches)                            | Very high         | Very high | В   | Α                                    | 42.1                        | 26.5                                                |
| HN94 | B71D          | Kgotswane (confluence with Olifants)                  | High              | Moderate  | В   | В                                    | -                           | -                                                   |
| HN95 | B71D,<br>B71F | Olifants (confluence with Steelpoort)                 | High              | Very high | D   | А                                    | 937.9                       | 4.3                                                 |
| HN96 | B71G,<br>H, J | Olifants (EWR11, confluence with<br>Blyde) (existing) | EIS = High        |           | Е   | D                                    | 1321.8                      | 11.2 (D)                                            |
| HN97 | B72A          | Makhutswi, including Moungwane &<br>Malomanye         | High              | High      | С   | В                                    | 38                          | 12.89                                               |
| HN98 | B72C          | Olifants (outlet - outlet of IUA10)                   | High              | High      | C   | С                                    | 1755.5                      | 18.07                                               |

#### APP TABLE 44: IUA 10 LOWER OLIFANTS (INCLUDES LOWER BLYDE): SUMMARY OF ECO-CLASSIFICATION AND EWR

#### APP TABLE 45: IUA 11 GA-SELATI RIVER: SUMMARY OF ECO-CLASSIFICATION AND EWR

| Node  | Quat    | Nodes                                              | EI               | ES        | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural<br>*MAR<br>(mcm/ a) | EWR (PES)<br>as % of<br>natural<br>MAR <sup>2</sup> |
|-------|---------|----------------------------------------------------|------------------|-----------|-----|--------------------------------------|-----------------------------|-----------------------------------------------------|
|       |         | Recommended Class III                              |                  |           |     |                                      |                             |                                                     |
| HN99  | B72E    | Ngwabatse (confluence with Ga-Selati)              | High             | Very high | D   | Α                                    | 25.7                        | 9.05                                                |
| HN100 | B72F, G | Ga-Selati (outlet of quaternary)                   | High             | Very high | C   | Α                                    | 13.5                        | 19.59                                               |
| HN101 | B72H    | Ga-Selati (EWR site - EWR14a)<br>(existing)        | EIS=<br>Moderate |           | С   | С                                    | 52.2                        | 19.59                                               |
| HN102 | B72J    | Molatle (confluence with Ga-Selati)                | Moderate         | Moderate  | В   | С                                    | 11.4                        | 12.67                                               |
| HN103 | B72K    | Ga-Selati (EWR site - EWR14b)<br>(existing)        | EIS=<br>Moderate |           | E   | D                                    | 72.7                        | 11.99<br>(D)                                        |
| HN104 | B72K    | Ga-Selati (outlet of quaternary - outlet of UIA11) | High             | High      | E   | D                                    | 72.7                        | 11.95<br>(D)                                        |

#### APP TABLE 46: IUA 12 LOWER OLIFANTS WITHIN KNP: SUMMARY OF ECO-CLASSIFICATION AND EWR

| Node  | Quat          | Nodes                                                     | EI               | ES   | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural<br>*MAR<br>(mcm/ a) | EWR (PES)<br>as % of<br>natural<br>MAR <sup>2</sup> |
|-------|---------------|-----------------------------------------------------------|------------------|------|-----|--------------------------------------|-----------------------------|-----------------------------------------------------|
|       |               | Recommended Class II                                      |                  |      |     |                                      |                             |                                                     |
| HN105 | B72D          | Olifants (EWR site - EWR13) (existing)                    | EIS=<br>Moderate |      | С   | С                                    | 1760.7                      | 11.36                                               |
| HN106 | B73A          | Klaserie (EWR site - OLI-EWR7) (Rapid<br>site)            | EIS=High         |      | B/C | В                                    | 25.5                        | 22.31                                               |
| HN107 | B73B          | Klaserie (confluence with Olifants)                       | High             | High | C   | В                                    | 37.1                        | 15.41                                               |
| HN108 | B73C          | Tsiri (confluence with Olifants)                          | High             | High | В   | В                                    | -                           | -                                                   |
| HN109 | B73C          | Tshutshi (confluence with Olifants)                       | High             | High | В   | В                                    | -                           | -                                                   |
| HN110 | B73D          | Nhlaralumi, including Machaton,<br>Nyameni and Thlaralumi | High             | High | В   | В                                    | 6.8                         | 13.65                                               |
| HN111 | B73E          | Sesete (confluence with Timbavati)                        | High             | High | В   | В                                    | 11.1                        | 12.24                                               |
| HN112 | B73F          | Timbavati (outlet of quaternary)                          | High             | High | В   | В                                    | 18.7                        | 12.12                                               |
| HN113 | B73G          | Timbavati, including<br>Shisakashonghondo                 | High             | High | В   | В                                    | -                           | -                                                   |
| HN114 | B73G,<br>B73H | Olifants (EWR site - EWR16) (existing)                    | EIS=High         |      | С   | В                                    | 1916.9                      | 10.75                                               |
| HN115 | B73J          | Hlahleni (confluence with Olifants)                       | High             | High | Α   | Α                                    | -                           | -                                                   |
| HN116 | B73J          | Olifants (outlet of quaternary - outlet of IUA12)         | High             | High | С   | В                                    | 1918.3                      | 14.72                                               |



| Node  | Quat | Nodes                                                       | EI               | ES           | PES | REC /<br>Default<br>REC <sup>1</sup> | Natural<br>*MAR<br>(mcm/ a) | EWR (PES)<br>as % of<br>natural<br>MAR <sup>2</sup> |
|-------|------|-------------------------------------------------------------|------------------|--------------|-----|--------------------------------------|-----------------------------|-----------------------------------------------------|
|       |      | Recommended Class I                                         |                  |              |     |                                      |                             |                                                     |
| HN117 | B60A | Blyde (confluence with Lisbon)                              | High             | Very<br>high | с   | А                                    | 87.1                        | 18.73                                               |
| HN118 | B60B | Lisbon, including Heddelspruit &<br>Watervalspruit          | High             | Very<br>high | В   | А                                    | -                           | -                                                   |
| HN119 | B60B | Blyde (outlet of quaternary)                                | High             | Very<br>high | В   | А                                    | 183.8                       | 32.86                                               |
| HN120 | B60C | Treur (EWR site - TRE-EWR1) (existing)                      | EIS=Very<br>high |              | A/B | A/B                                  | 46.8                        | 34.6                                                |
| HN121 | B60D | Blyde (inflow to Blyderivierpoort Dam -<br>outlet of IUA13) | High             | Very<br>high | В   | А                                    | 283.9                       | 31.57                                               |

#### APP TABLE 47: IUA 13 BLYDE RIVER CATCHMENT: SUMMARY OF ECO-CLASSIFICATION AND EWR



AWARD is a non-profit organisation specialising in participatory, research-based project implementation. Their work addresses issues of sustainability, inequity and poverty by building natural-resource management competence and supporting sustainable livelihoods. One of their current projects, supported by USAID, focuses on the Olifants River and the way in which people living in South Africa and Mozambique depend on the Olifants and its contributing waterways. It aims to improve water security and resource management in support of the healthy ecosystems to sustain livelihoods and resilient economic development in the catchment.

P O Box 1919, Hoedspruit 1380, Limpopo, South Africa **T** 015-793 0503 **W** award.org.za Company Reg. No. 98/03011/08 Non-profit org. Reg. No. 006 – 821

#### About USAID: RESILIM-O

USAID: RESILIM-O focuses on the Olifants River Basin and the way in which people living in South Africa and Mozambique depend on the Olifants and its contributing waterways. It aims to improve water security and resource management in support of the healthy ecosystems that support livelihoods and resilient economic development in the catchment. The 5-year programme, involving the South African and Mozambican portions of the Olifants catchment, is being implemented by the Association for Water and Rural Development (AWARD) and is funded by USAID Southern Africa. Copyright © 2018 The Association for Water and Rural Development (AWARD). This material may be used for non-profit and educational purposes. Please contact the authors in this regard, at:

#### info@award.org.za

The content of this publication does not necessarily reflect the views of AWARD, USAID or the United States Government.

#### Acknowledgements: Project funding and support

The USAID: RESILIM-O project is funded by the U.S. Agency for International Development under USAID/ Southern Africa RESILIENCE IN THE LIMPOPO BASIN PROGRAM (RESILIM). The RESILIM-O project is implemented by the Association for Water and Rural Development (AWARD), in collaboration with partners. Cooperative Agreement nr AID-674-A-13-00008

